refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 182 results
Sort by

Filters

Technology

Platform

accession-icon GSE39925
Transcriptional characterization of a prospective series of primary plasma cell leukemia revealed genes associated with tumor progression and poorest outcome
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Plasma cell leukemia (PCL) is a rare form of plasma cell dyscrasia that presents either as a progression of previously diagnosed multiple myeloma (MM), namely secondary PCL (sPCL), or as the initial manifestation of disease, namely primary PCL (pPCL). Although presenting signs and symptoms include those seen in MM, pPCL is characterized by several aspects that clearly define more aggressive course. To provide insights into the biology of pPCL, we have investigated the transcriptional profiles of a cohort of 21 newly-diagnosed, homogeneously treated pPCL patients included in a multicenter prospective clinical trial. All but one pPCL had one of the main IGH translocations, whose associated transcriptional signatures resembled those observed in MM. A 503-gene signature was identified that distinguished pPCL from MM, from which emerged 28 genes whose trend in expression levels was found associated with the progressive stages of plasma cell dyscrasia in a large dataset of cases from multiple institutions, including samples from normal donors throughout PCL. The transcriptional pattern of the pPCL series was then evaluated in association with outcome. Three genes were identified having expression levels correlated with response to the first-line treatment with lenalidomide/dexamethasone, whereas a 27-gene signature was identified associated with overall survival independently of molecular alterations, hematological parameters and renal function. Overall, our data contribute to a fine dissection of pPCL and may provide novel insights into the molecular definition of a subgroup of high-risk pPCL.

Publication Title

Transcriptional characterization of a prospective series of primary plasma cell leukemia revealed signatures associated with tumor progression and poorer outcome.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE39383
Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with transcriptional Profile alterations
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE39381
Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with transcriptional Profile alterations (Expression)
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

Primary plasma cell leukaemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinguished from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Here, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequently altered regions were located at 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%) and 17p (35%). A relevant finding of our study was the identification of a minimal biallelical deletion (1.5 Mb) in 8p21.2 encompassing the putative tumor suppressor gene PPP2R2A that was significantly down-regulated in deleted cases. Mutations of TP53 were identified in 4 cases all but one associated with a monoallelic deletion of the gene, whereas activating mutations of BRAF occurred in one case and were absent for N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferases activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to our understanding of this particular form of plasma cell dyscrasia and to better elucidate the mechanisms of tumor progression in MM.

Publication Title

Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE45859
L1CAM overexpression in mouse lung endothelial cells (lECs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In an attempt to elucidate the molecular mechanisms underlying the multiple roles of L1 in endothelium, we checked whether manipulating its expression affected the transcriptome of lECs. To this purpose, we compared the gene expression profiles of L1-overexpressing and control lECs by Affymetrix, which revealed a remarkable effect of L1 overexpression on lECs transcriptome.

Publication Title

Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19372
Expression time series during the differentiation of ventral motor neurons from embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7).

Publication Title

Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP045359
CTCF functions as a chromatin insulator in the HoxA cluster during neurogenesis [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In this experiment, we sought to analyze how the transcriptome of WT, ?5|6, and ?5|6:7|9 cells vary during differentiation of ESCs into cervical motor neurons Overall design: 3 lines (WT, ?5|6, ?5|6:7|9)

Publication Title

CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66420
Defining the microglia transcriptome in multifunctional protein-2 deficient mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Purpose: We purified whole brain microglia of MFP2 knockout mice and control mice utilizing percoll gradient and FACS sorting, followed by microarray analysis to define the molecular changes in MFP2 knockout mice at the endstage of the disease. We compared the microglia transcriptome of Mfp2-/- microglia to that of SOD1-G93A microglia isolated from spinal cord to define the microglia signature associated with a non-neurodegenerative environment. Results and conclusions: Mfp2-/- microglia acquire an activation state characterized by activation of mammalian target of rapamycin (mTOR). In addition, activated microglia display reduced expression of genes that are normally highly expressed by surveillant microglia in steady-state conditions. The immunological profile of is heterogeneous and encompasses upregulation of both pro- and anti-inflammatory genes. In contrast to the neurodegeneration-specific microglia profile in SOD1-G93A mice, Mfp2-/- microglia do not induce genes associated with phagocytosis, lysosomal activation and neurotoxicity.

Publication Title

Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β-oxidation deficiency.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE31456
Transcriptional mechanisms controlling direct motor neuron programming
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptional programming of cell identity promises to open up new frontiers in regenerative medicine by enabling the efficient production of clinically relevant cell types. We examine if such cellular programming is accomplished by transcription factors that each have an independent and additive effect on cellular identity, or if programming factors synergize to produce an effect that is not independently obtainable. The combinations of Ngn2-Isl1-Lhx3 and Ngn2-Isl1-Phox2a transcription factors program embryonic stem cells to express a spinal or cranial motor neuron identity respectively. The two alternate expression programs are determined by recruitment of Isl1/Lhx3 and Isl1/Phox2a pairs to distinct genomic locations characterized by two alternative dimeric homeobox motifs. These results suggest that the function of programming modules relies on synergistic interactions among transcription factors and thus cannot be extrapolated from the study of individual transcription factors in a different cellular context.

Publication Title

Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE93754
The genomic distribution and gene expression profiling of cardiomyocyte-enriched populations
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE37667
The peripheral genome-wide gene expression profiles in humans after prolonged wakefulness and sleep recovery
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. We evaluated the gene expression profiles of healthy male volunteers who underwent 60 hours of prolonged wakefulness (PW) followed by 12 hours of sleep recovery (SR) using high-resolution microarrays. Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response as well diverse immune system responses such as natural killer pathways including killer cell lectin-like receptors family, as well granzymes and T-cell receptors which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was down-regulated following PW and up-regulated after SR compared to PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC and CEACAM genes, confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

Publication Title

Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact