refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 419 results
Sort by

Filters

Technology

Platform

accession-icon GSE73655
Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease.
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We investigated gene expression signatures in subcutaneous adipose tissue obtained from control subjects, premanifest HD gene carriers and manifest HD subjects with the aim to identify gene expression changes and signalling pathway alterations in adipose tissue relevant to HD.

Publication Title

Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE106713
Transcriptomic responses of Arabidopsis wild-type and amp1 seedlings after hyperphyllin treatment
  • organism-icon Arabidopsis thaliana
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st), Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE106659
Transcriptomic responses of Arabidopsis wild-type and amp1 seedlings after hyperphyllin treatment [AraGene-1_1-st array]
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. To further assess whether hyperphyllin acts in an AMP1-dependent manner we compared the transcriptonal responses of hyperphyllin-treated wild-type and amp1 mutant seedlings.

Publication Title

The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE106712
Transcriptomic analysis of Hyperphyllin-treated Arabidopsis seedlings [ATH1 array]
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. To further assess whether hyperphyllin acts in an AMP1-dependent manner we compared the transcriptonal responses of hyperphyllin-treated wild-type Arabidopsis seedlings with those of untreated amp1 mutant seedlings.

Publication Title

The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-MEXP-3397
Transcription profiling of DEX-inducible SNRK3.15 Arabidopsis seedlings in the presence of ABA
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional profiling of a DEX-inducible SNRK3.15 seedlings in the presence of ABA.

Publication Title

A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE108875
Expression data from mouse spleens after experimental stroke (reanalysis of dataset GSE70841 with additional experimental)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Infection is a major complication and cause of mortality and morbidity after acute stroke however the mechanisms are poorly understood. After experimental stroke the microarchitecture and cellular composition of the spleen are extensively disrupted resulting in deficits to immune function.

Publication Title

Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE42986
Transcriptome profiling in human primary mitochondrial respiratory chain disease
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: CHOP_1.0_ENTREZG (huex10st)

Description

Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. To identify a common cellular response to RC disease, systems biology level transcriptome investigations were performed in human RC disease skeletal muscle and fibroblasts. Global transcriptional and post-transcriptional dysregulation in a tissue-specific fashion was identified across diverse RC complex and genetic etiologies. RC disease muscle was characterized by decreased transcription of cytosolic ribosomal proteins to reduce energy-intensive anabolic processes, increased transcription of mitochondrial ribosomal proteins, shortened 5'-UTRs to improve translational efficiency, and stabilization of 3'-UTRs containing AU-rich elements. These same modifications in a reversed direction typified RC disease fibroblasts. RC disease also dysregulated transcriptional networks related to basic nutrient-sensing signaling pathways, which collectively mediate many aspects of tissue-specific cellular responses to primary RC disease. These findings support the utility of a systems biology approach to improve mechanistic understanding of mitochondrial RC disease.

Publication Title

Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE52308
Expression data from H358
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Tumors that show evidence of epithelial to mesenchymal transition (EMT) have been associated with metastasis, drug resistance, and poor prognosis. EMT may alter the molecular requirements for growth and survival in different contexts, but the underlying mechanisms remain incomplete. Given the heterogeneity along the EMT spectrum between and within tumors it is important to define the requirements for growth and survival in cells with an epithelial or mesenchymal phenotype to maximize therapeutic efficacy.

Publication Title

Epithelial-to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE33654
Gene expression from healthy male and female porcine aortic valve leaflets
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Calcific aortic valvular disease (CAVD) is characterized by sclerosis of the aortic valve leaflets and recent clinical studies have linked several other risk factors to this disease, including male sex. In this study we examined potential sex-related differences in gene expression profiles between porcine male and female valvular interstitial cells (VICs) to explore possible differences in CAVD propensity on the cellular level.

Publication Title

Sex-related differences in gene expression by porcine aortic valvular interstitial cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40245
Identification of glucose-TOR signaling early target genes in Arabidopsis seedling autotrophic transition stage
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The goal of this experiment was to explore the molecular network of glucose-TOR signaling in Arabidopsis seedling autotrophic transition stage. We used the whole-genome microarrays to detail the global program of gene expression mediated by glucose and TOR.

Publication Title

Glucose-TOR signalling reprograms the transcriptome and activates meristems.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact