We used microarrays to assess gene expression changes in cells with siRNA-mediated knockdown of OPG compared to normal cells. Furthermore, we used microarrays to assess gene expression in cells treated with either RANKL or TRAIL compared to vehicle-treated cells.
No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells.
Specimen part, Treatment
View SamplesCultured wild-type immortalized fibroblasts transcriptome
JunD reduces tumor angiogenesis by protecting cells from oxidative stress.
Sex, Specimen part
View SamplesThe pathogenesis of classical Hodgkin lymphoma (cHL), the most common lymphoma in the young, is still enigmatic, largely because its Hodgkin and Reed-Sternberg (HRS) tumor cells are rare in the involved lymph node and therefore difficult to analyze. Here, by overcoming this technical challenge and performing for the first time a genome-wide transcriptional analysis of microdissected HRS cells in comparison to other B-cell lymphomas, cHL lines and normal B-cell subsets, we show that they differ extensively from the usually studied cHL cell lines, that the lost B-cell identity of cHLs is not linked to the acquisition of a plasma cell-like gene expression program, and that Epstein-Barr virus infection of HRS cells has a minor transcriptional influence on the established cHL clone. Moreover, although cHL appears a distinct lymphoma entity overall, HRS cells of its histological subtypes diverged in their similarity to other related lymphomas. Unexpectedly, we identified two molecular subgroups of cHL associated to differential strengths of the transcription factor activity of the NOTCH1, MYC and IRF4 proto-oncogenes. Finally, HRS cells display deregulated expression of several genes potentially highly relevant to lymphoma pathogenesis, including silencing of the apoptosis-inducer BIK and of INPP5D, an inhibitor of the PI3K-driven oncogenic pathway.
Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma.
Specimen part, Cell line
View SamplesExpression data from Breast cancer subtypes
Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients.
Disease, Cell line
View SamplesTranscriptome analysis of high-grade human ovarian adenocarcinomas. The hypothesis tested in the present study was that two reciprocal pathways, namely oxidative stress response and fibrosis, enable to build a hierarchical cluster of ovarian patients.
miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response.
Specimen part, Disease stage
View SamplesIn a cohort study of 7 women with primary invasive breast cancer, we obtained a tumor specimen before (biopsy) and after (tumorectomy) 4 cycles of NAC with epirubicine and cyclophosphamide, followed by 4 cycles of taxanes. Total RNA was extracted from tumor specimens and the whole transcriptome was quantified with Affymetrix HuGene1.1ST. Molecular functions changing during chemotherapy were searched.
Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients.
Specimen part, Subject, Time
View Samples10 biopsies before treatment from triple negative patients with complete response were collected. Total RNA was extracted from tumor specimens and the whole transcriptome was quantified with Affymetrix HuGene1.1ST. The biopsies were classified into Good (major or complete) or Poor (absent or minor) therapeutic response subgroup.
Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients.
Sex, Specimen part
View SamplesDeficiency of the human short stature homeobox-containing gene (SHOX) has been identified in several disorders characterized by reduced height and skeletal anomalies such as Turner, Leri-Weill and Langer syndrome as well as idiopathic short stature. Although highly conserved in vertebrates, rodents lack a SHOX orthologue.
Identification of novel SHOX target genes in the developing limb using a transgenic mouse model.
Specimen part
View SamplesIn Drosophila, PIWI proteins and bound PIWI interacting RNAs (piRNAs) form the core of a small RNA mediated defense system against selfish genetic elements. Within germline cells piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de-silencing, to a collapse in piRNA levels and to a failure in Piwi nuclear accumulation. We show that Armitage and Yb interact physically and co-localize in cytoplasmic Yb-bodies, which flank P-bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb-bodies indicating that Yb-bodies are sites of primary piRNA biogenesis. Overall design: small RNA libraries were prepared from Piwi immuno-precipitates of five different genotypes
An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila.
Subject
View SamplesWe have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin for 3 or 6 hours to induce the p38/MAP kinase pathway. In order determine transcriptional effects dependent on MSK1/2 kinase activity, H89 inhibitor was used in the study. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 3 h or 6h (in duplicates) either with or without 15-min pre-treatment with MSK1/2 inhibitor H89 (10 uM). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.
H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.
No sample metadata fields
View Samples