refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 425 results
Sort by

Filters

Technology

Platform

accession-icon GSE66521
Transcriptomic response of Saccharomyces cerevisiae in mixed-culture wine fermentation with Hanseniaspora guilliermondii
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Natural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.

Publication Title

Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE52929
Sel1L is Indispensable for Mammalian ERAD, ER Homeostasis and Survival
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Sel1L is an adaptor protein for the E3 ligase Hrd1 involved in endoplasmic reticulum-associated degradation (ERAD). Its physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we provide the first in vivo evidence that Sel1L is indispensable for Hrd1 stability, ER homeostasis and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 weeks with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation and promotes cell death. Serendipitously, using biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of mammalian ERAD and ER homeostasis, which is essential for protein translation, pancreatic function, cellular and organismal survival.

Publication Title

Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7645
Expression data for Saccharomyces cerevisiae oxidative stress response
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress.

Publication Title

The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79379
Expression data from consecutive stages of human early in vitro T-cell differentiation
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Human T-cell development is less well studied than its murine counterpart due to the lack of genetic tools and the difficulty of obtaining cells and tissues. However, recent technological advances allow identification of the transcriptional landscape of differentiating human thymocytes. Here we report the gene expression profiles of 11 immature, consecutive T-cell developmental stages. The changes in gene expression of cultured stem cells on OP9-DL1 match those of ex vivo isolated human thymocytes. These analyses led us to define evolutionary conserved gene signatures that represent pre- and post- T-cell commitment stages. We found that loss of CD44 marks T-cell commitment in early CD7+CD5+CD45dim cells, before the acquisition of CD1a surface expression. The CD44-CD1a- post-committed thymocytes have initiated in frame TCR rearrangements and have completely lost the capacity to develop into myeloid, B- and NK-cells, unlike uncommitted CD44+CD1a- thymocytes. Therefore, loss of CD44 represents a previously unrecognized stage that defines the earliest committed T-cell population in the human thymus.

Publication Title

Loss of CD44<sup>dim</sup> Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45776
Transcriptome-based characterization of the interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat co-cultures
  • organism-icon Saccharomyces cerevisiae, Lactobacillus delbrueckii subsp. bulgaricus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). The design of the cultivation conditions was based on the observation that Lb. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not Lb. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial -galactosidase.

Publication Title

Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP171641
Bacterial diet and weak cadmium stress affect the age-specific survival rates of Caenorhabditis elegans and its resistance against severe stressors
  • organism-icon Caenorhabditis elegans
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Stressors may have negative or positive effects in dependence of the dose (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms, and determining developmental speed or survival rates and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. This study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress especially promote the resistance against severe abiotic or biotic stress and the age-specific survival rate of WT. Overall design: Five experimental conditions; mostly three replicates per experimental condition; four contrasts between test and control conditions functionally analyzed.

Publication Title

Bacterial diet and weak cadmium stress affect the survivability of <i>Caenorhabditis elegans</i> and its resistance to severe stress.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE30539
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE72533
Reconstructing gene regulatory networks of tumorigenesis
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE30537
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics [mRNA profiling]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Retinoic acid (RA) triggers physiological processes by activating heterodimeric transcription factors comprising retinoic acid (RARa,b,g) and retinoid X (RXRa,b,g) receptors. How a single signal induces highly complex temporally controlled networks that ultimately orchestrate physiological processes is unclear. Using an RA-inducible differentiation model we defined the temporal changes in the genome-wide binding patterns of RARg and RXRa and correlated them with transcription regulation. Unexpectedly, both receptors displayed a highly dynamic binding, with different RXRa heterodimers targeting identical loci. Comparison of RARg and RXRa co-binding at RA-regulated genes identified putative RXRa-RARg target genes that were validated with subtype-selective agonists. Gene regulatory decisions during differentiation were inferred from transcription factor target gene information and temporal gene expression. This analysis revealed 6 distinct co-expression paths of which RXRa-RARg is associated with transcription activation, while Sox2 and Egr1 were predicted to regulate repression. Finally, RXRa-RARg regulatory networks were reconstructed through integration of functional co-citations. Our analysis provides a dynamic view of RA signalling during cell differentiation, reveals RA heterodimer dynamics and promiscuity, and predicts decisions that diversify the RA signal into distinct gene-regulatory programs.

Publication Title

Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE49944
Senescence secreted factors activate Myc and sensitize pre-transformed cells to TRAIL-induced apoptosis
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Senescent cells secrete a plethora of factors with potent paracrine signaling capacity. Strikingly, senescence, which acts as a defense against cell transformation, exerts pro-tumorigenic activities through its secretome by promoting numerous tumor-specific features, such as cellular proliferation, epithelial-mesenchymal transition and invasiveness. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has the unique activity of activating cell death exclusively in tumor cells. Given that the senescence-associated secretome supports cell transformation, we asked whether factor(s) of this secretome would establish a program required for the acquisition of TRAIL sensitivity. We found that conditioned media from several types of senescent cells (CMS) efficiently sensitized pre-transformed cells to TRAIL, while the same was not observed with normal or immortalized cells. Dynamic transcription profiling analysis of CMS-exposed pre-transformed cells revealed paracrine autoregulatory loop of senescence-associated secretome factors and a dominant role of CMS-induced MYC. Sensitization to TRAIL coincided with MYC upregulation and massive changes in gene regulation. CMS-induced MYC silenced its target gene CFLAR, encoding the apoptosis inhibitor FLIPL, thus leading to the acquisition of TRAIL sensitivity. Altogether, our results reveal that senescent cell-secreted factors exert a TRAIL sensitizing effect on pre-transformed cells by modulating the expression of MYC and CFLAR. Notably, CMS dose-dependent sensitization to TRAIL was observed with TRAIL-insensitive cancer cells and confirmed in co-culture experiments. Dissection and characterization of TRAIL-sensitizing CMS factors and the associated signaling pathway(s) may provide a mechanistic insight in the acquisition of TRAIL sensitivity and lead to novel concepts for the apoptogenic therapy of pre-malignant and TRAIL-resistant tumors.

Publication Title

Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact