refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 302 results
Sort by

Filters

Technology

Platform

accession-icon GSE81440
Identification of an NKX3.1-G9a-UTY regulatory network that controls prostate differentiation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

To investigate the role of NKX3.1 in prostate differentiation, we employed transcriptome analysis of mouse seminal vesicle (from 15-month-old Nkx3.1+/+ mice); mouse prostate (from 4-month-old Nkx3.1+/+ and Nkx3.1-/- mice); human prostate cells (RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression); and tissue recombinants (generated from combining engineered mouse epithelial cells (seminal vesicle epithelial cells or prostate epithelial cells from 2-month-old mice) and rat UGS mesenchymal cells). Mouse tissue or human cells were snap frozen for subsequent molecular analysis.

Publication Title

Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Sample Metadata Fields

Age, Specimen part, Cell line

View Samples
accession-icon GSE69214
Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE69211
Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models (I)
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the transcriptome of mouse models of prostate cancer after treatment with rapamycin and PD0325901 combination therapy or standard of care docetaxel. The Nkx3.1CreERT2/+; Ptenflox/flox; KrasLSL-G12D/+ (NPK mice) was used in this study. Two months after tumor induction, mice were randomly assigned to vehicle (Veh) or treatments groups, such as rapamycin and PD0325901 (RAPPD) or docetaxel (Docetaxel). For the treatment groups mice were administered rapamycin (10 mg/kg) and PD0325901 (10 mg/kg) or docetaxel (10 mg/kg) for 5 days (SHORT) or for 1 month (LONG). At the end of the treatment, mice were euthanized, tumors harvested and snap frozen for subsequent molecular analysis.

Publication Title

Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP075116
Identification of an NKX3.1-G9a-UTY regulatory network that controls prostate differentiation (Mouse_Recomb_RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Analysis of transcriptome of tissue recombinants (mouse seminal vesicle epithelial [SVE] cells or prostate epithelial [PE] cells, and rat urogenital sinus [UGS] mesenchymal cells) grown under the kidney capsule in athymic nude mice for 3 months. Overall design: Total RNA obtained from tissue recombinants generated from combining engineered mouse epithelial cells (SVE or PE from 2-month-old C57Bl/6J mice) and rat UGS mesenchymal cells. Tissue recombinants were harvested and processed for RNA isolation and transcriptome analysis using the RNeasy kit (Qiagen).

Publication Title

Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE71274
IFNg+ vs IFNg- Treg
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression studies comparing IFNg+ Tregs versus IFNg- Tregs from human peripheral blood

Publication Title

AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP075117
Identification of an NKX3.1-G9a-UTY regulatory network that controls prostate differentiation (Human_RWPE1_RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Analysis of transcriptome of human RWPE1 cells over-expressing wild type NKX3.1 and mutant NKX3.1 (T164A). Overall design: Total RNA obtained from RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression. Engineered RWPE1 cells were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).

Publication Title

Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP075114
Identification of an NKX3.1-G9a-UTY regulatory network that controls prostate differentiation (Mouse_4M-Prostate_RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Analysis of transcriptome of prostate tissue from 4-month-old Nkx3.1 +/+ and Nkx3.1 -/- mice. Overall design: Total RNA obtained from prostate tissues from 4-month-old Nkx3.1 +/+ and Nkx3.1 -/- mice. Prostate tissues were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).

Publication Title

Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE69213
Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models (II)
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the transcriptome of allografted mouse tumors after treatment with rapamycin and PD0325901. Nkx3.1CreERT2/+; Ptenflox/flox; KrasLSL-G12D/+ (NPK mice) were induced and their tumors removed to generate allograft lines by implanting a 1.5 mm3 tumor fragment in the subcutaneous space of athymic nude mice. Allografted NPK tumors were allowed to grow until they reached a volume of 1 cm3, at which moment they were randomly assigned to either vehicle (Veh) or combination therapy using rapamycin and PD0325901 (RAPPD). Allografted mice were administered rapamycin (10 mg/kg) and PD0325901 (10 mg/kg) during five consecutive days (Allo SHORT). Mice were euthanized in the fifth day 6 hours after having received the last treatment and the tumors were harvested and snap frozen for subsequent molecular analysis.

Publication Title

Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE80600
Identification of an NKX3.1-G9a-UTY regulatory network that controls prostate differentiation (Mouse_15M_SV_Affy)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analysis of transcriptome of seminal vesicle from 15-month-old Nkx3.1+/+ mice.

Publication Title

Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20540
Gene expression profiles of myeloma cells interacting with bone marrow stromal cells in vitro
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Conventional anti-cancer drug screening is typically performed in the absence of accessory cells (e.g. stromal cells) of the tumor microenvironment, which can profoundly alter anti-tumor drug activity. To address this major limitation, we have developed assays (e.g. the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay) to selectively quantify tumor cell viability, in presence vs. absence of non-malignant stromal cells or drug treatment. These assays have allowed us to identify that neoplastic cells from diverse malignancies exhibit stroma-induced resistance to different anti-tumor agents. In this analysis, we evaluated the molecular changes triggered in myeloma cells by their in vitro interaction with stromal cells. The transcriptional profile of 3 human multiple myeloma (MM) cell lines (MM.1S, MM.1R, INA-6) co-cultured with stromal cells vs. when cultured alone was characterized by oligonucleotide microarray analysis, using the human U133 plus 2.0 Affymetrix GeneChip.

Publication Title

Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact