refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 225 results
Sort by

Filters

Technology

Platform

accession-icon GSE46405
Olig1 is a Smad cofactor involved in cell motility induced by transforming growth factor-b
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transforming growth factor (TGF)- plays crucial roles in embryonic development and adult tissue homeostasis by eliciting various cellular responses in target cells. TGF- signaling is principally mediated through receptor-activated Smad proteins, which regulate expression of target genes in cooperation with other DNA-binding transcriptionfactors (Smad cofactors). In this study, we found that the basic helix-loop-helix transcription factor Olig1 is a Smad cofactor involved in TGF-b-induced cell motility. Knockdown of Olig1 attenuated TGF--induced cell motility in chamber migration and wound healing assays. In contrast, Olig1 knockdown had no effect on bone morphogenetic protein-induced cell motility, TGF--induced cytostasis or epithelial-mesenchymal transition. Furthermore, we observed that cooperation of Smad2/3 with Olig1 is regulated by a peptidyl-prolyl cis/trans isomerase, Pin1. TGF-b-induced cell motility, induction of Olig1-regulated genes, and physical interaction between Smad2/3 and Olig1 were all inhibited after knockdown of Pin1, indicating a novel mode of regulation of Smad signaling. We also found that Olig1 interacts with the L3 loop of Smad3. Using a synthetic peptide corresponding to the L3 loop of Smad3, we succeeded in selectively inhibiting TGF-b-induced cell motility. These findings may lead to a new strategy for selective regulation of TGF-b-induced cellular responses.

Publication Title

Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55034
DNA methylation and gene expression analysis during myogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DNA methylation has been considered to play an important role during myogenic differentiation. In terminal differentiation of myoblasts, chronological alteration of DNA methylation status was poorly understood. Using Infinium HumanMethylation450 BeadChips, we validated genome wide DNA methylation profiles of human myoblast differentiation models. To investigate correlation between DNA methylation and gene expression, we also assessed gene expression of myoblasts with GeneChip Human Genome U133 Plus 2.0 array.

Publication Title

DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE46511
Expression data of NIH3T3 in G0 and G1 phases
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase

Publication Title

A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE51510
Role of TTF-1/NKX2-1, Smad3 and Smad4 on lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE49675
Expression data of human lung adenocarcinoma cell line H441 treated with TTF-1/NKX2-1 siRNA and TGF-beta
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We determined and analyzed the effect of TTF-1/NKX2-1 on Smad3/Smad4 binding sites by ChIP-sequencing.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP040727
Effect of TTF-1/NKX2-1 expression on TGF-beta induced gene expression in A549 lung cancer cell line.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

TTF-1/NKX2-1 was expressed by adenoviral vector and changes in gene expression were determined by RNA-sequencing. Overall design: A549 cells were infected with Ad-TTF-1 or Ad-LacZ vectors and stimulated with TGF-beta for 24 hours or left untreated. Expression of polyA RNA was determined.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90103
Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis for the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice, and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression was significantly deceased in spermatozoa from Zfy1/2-DKO mice compared with those from wild type mice. These results are consistent with the phenotypic changes seen in the double mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.

Publication Title

Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP131065
Effect of NORAD shRNA on A549 cells treated with TGF-beta
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We evaluated the effect of NORAD (also known as LINC00657 or LOC647979) shRNA on TGF-beta induced changes in the gene expression in A549 cells by RNA-seq. Overall design: mRNA expression was determined in a lung adenocarcinoma cancer cell line A549 infected with NORAD shRNA-expressing lentiviral vector and treated with TGF-beta.

Publication Title

Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP041997
Id2 and Id3 maintain the regulatory T cell pool to suppress inflammatory disease
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

Regulatory T (Treg) cells suppress the development of inflammatory disease, but our knowledge of transcriptional regulators that control this function remains incomplete. Here we show that expression of Id2 and Id3 in Treg cells was required to suppress development of fatal inflammatory disease. We found that T cell antigen receptor (TCR)-driven signaling initially decreased the abundance of Id3, which led to the activation of a follicular regulatory T (TFR) cell–specific transcription signature. However, sustained lower abundance of Id2 and Id3 interfered with proper development of TFR cells. Depletion of Id2 and Id3 expression in Treg cells resulted in compromised maintenance and localization of the Treg cell population. Thus, Id2 and Id3 enforce TFR cell checkpoints and control the maintenance and homing of Treg cells. Overall design: Treg mRNA profiles in lymph node from 3-week-old Id2fl/flId3fl/fl;Foxp3Cre/Cre (Id2 Id3 double-knockout) and control mice are generated by deep sequencing.

Publication Title

Id2 and Id3 maintain the regulatory T cell pool to suppress inflammatory disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP015845
Next Generation Sequencing Facilitates Quantitative Analysis of Argonaute 2 (Ago2)-immunoprecipitation (IP) after miR-195 or miR-497 overexpression in HepG2
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

To explore functionally crucial tumor-suppressive (TS)-miRNAs in hepatocellular carcinoma (HCC), we performed integrative function- and expression-based screenings of TS-miRNAs in six HCC cell lines. The screenings identified seven miRNAs, which showed growth-suppressive activities through the overexpression of each miRNA and were endogenously downregulated in HCC cell lines. Further expression analyses using a large panel of HCC cell lines and primary tumors demonstrated four miRNAs, miR-101, -195, -378 and -497, as candidate TS-miRNAs frequently silenced in HCCs. Among them, two clustered miRNAs miR-195 and miR-497 showed significant growth-suppressive activity with induction of G1 arrest. Comprehensive exploration of their targets using Argonute2-immunoprecipitation-deep-sequencing (Ago2-IP-seq) and genome-wide expression profiling after their overexpression, successfully identified a set of cell-cycle regulators, including CCNE1, CDC25A, CCND3, CDK4, and BTRC. Our results suggest the molecular pathway regulating cell cycle progression to be integrally altered by downregulation of miR-195 and miR-497 expression, leading to aberrant cell proliferation in hepatocarcinogenesis. Identification of miR-195 and miR-497 target genes by sequencing Ago2-binding mRNAs and total mRNAs of miR-195 or miR-497 overexpressed, or non-treated Hep G2 cell. Overall design: Deep sequencing of RNAs in Ago2-IP fraction and mRNAs extracted from miR-195 or miR-497 overexpressed, or non-treated Hep G2 cell.

Publication Title

The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma.

Sample Metadata Fields

Cell line, Treatment, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact