refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 281 results
Sort by

Filters

Technology

Platform

accession-icon SRP158468
Adipose tissue RNAseq in T-cell-specific IFNAR-deficient mice.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We sequenced whole adipose tissue from control and LCMV infected mice 6dpi, in control vs T cell-specific IFNAR knockoutmice to understand the transcriptional changes in adipose tissue upon loss of type I IFN-T cell singaling axis, and how it contributes to cachexia. Overall design: inguinal fat pad (after removing iLN) was used for sequencing in control and infected mice (LCMV clone13 2x10^6PFU), this was done in two genotypes (IFNARfl/fl) as controls, vs (IFNARfl/fl-CD4cre/+) as T-cell specific IFNAR knockouts.

Publication Title

CD8<sup>+</sup> T cells induce cachexia during chronic viral infection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE61643
PGC-1 Promotes Enterocyte Lifespan and Tumorigenesis in the Intestine
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61642
Genome-wide analysis expression of ileum tumor samples from FVBN/APCmin and iPGC-1/APCmin
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Analysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1 specifically in the intestine.

Publication Title

PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61640
Genome-wide analysis expression of ileum samples from PGC-1 fl/? and iKOPGC-1
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Analysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in enterocytes from intestine specific PGC-1 konckout mice.

Publication Title

PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52315
Gene expression profile of MM1S under normoxic and hypoxic conditions
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MM1S cells have been cultured under normoxic and hypoxic conditions, and gene expression profiling has been performed using the Affymetrix Human Genome U133 Plus 2.0 array.

Publication Title

Metabolic signature identifies novel targets for drug resistance in multiple myeloma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE40821
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Decreased bile secretion in rodents by either ligation of the common bile duct or induction of cirrhosis causes changes in the small intestine, including bacterial overgrowth and translocation across the mucosal barrier. Oral administration of bile acids inhibits these effects. The genes regulated by FXR in ileum suggested that it might contribute to the enteroprotective actions of bile acids. To test this hypothesis, mice were administered either GW4064 or vehicle for 2 days and then subjected to bile duct ligation (BDL) or sham operation. After 5 days, during which GW4064 or vehicle treatment was continued, the mice were killed and their intestines were analyzed for FXR target gene expression.

Publication Title

Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE39507
Microarray analysis of FXR-regulated genes in murine small intestine.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. In this report we have examined the role of FXR in the ileum. We demonstrate that it plays a crucial role in preventing bacterial overgrowth and maintaining the integrity of the intestinal epithelium

Publication Title

Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.

Sample Metadata Fields

Sex, Compound

View Samples
accession-icon GSE44073
Liver X Receptors play an antitumoral role in the intestine
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE44071
Genome-wide analysis of gene expression profile of Intestinal (ILEUM) Tumors from APCmin/+/VP16LXRa vs APCmin/+/VP16
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Changes in gene expression profile of intestinal (ILEUM) Tumors from APCmin/+/VP16LXRa vs APCmin/+/VP16. The hypothesis tested in the present study was that LXRa overexpression influence cancer growth modulating lipid metabolism in cancer cells. Results provide the information that LXRa induces genes encoding proteins able to regulate cholesterol efflux.

Publication Title

Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE50683
Gene expression profile of C1013G/CXCR4 mutated WM cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

C1013G/CXCR4 variant has been inserted into BCWM.1 cells, and gene expression profile has been performed on the mutated cells and on the parental cells.

Publication Title

C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact