refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 87 results
Sort by

Filters

Technology

Platform

accession-icon GSE56843
Steroid Receptor Coactivator 1 is an Integrator of Glucose and NAD(+)/NADH Homeostasis
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SRC-1 affects the expression of complex I of the mitochondrial electron transport chain, a set of enzymes responsible for the conversion of NADH to NAD(+). NAD(+) and NADH were subsequently identified as metabolites that underlie SRC-1's response to glucose deprivation. Knockdown of SRC-1 in glycolytic cancer cells abrogated their ability to grow in the absence of glucose consistent with SRC-1's role in promoting cellular adaptation to reduced glucose availability

Publication Title

Steroid receptor coactivator 1 is an integrator of glucose and NAD+/NADH homeostasis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP110814
Hepatic Expression of Ectodysplasin (ED) A Increases in Obesity and Impairs Insulin Sensitivity in Skeletal Muscle
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We screened intronic microRNAs dysregulated in liver of obese mouse models to identify previously uncharacterized coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach identified the expression of Ectodysplasin A (Eda), the causal gene of X-linked hypohidrotic ectodermal dysplasia (XLHED; MIM 305100) was strongly increased in liver of obese mouse models both in rodents and humans.Eda expression in murine liver is controlled via PPAR? activation, increases in circulation and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. Consistently, bi-directional modulation of hepatic Eda expression in mouse models affects systemic glucose metabolism with alterations of muscle insulin signaling, revealing a novel role of EDA as an obesity-associated hepatokine, which impairs insulin sensitivity in skeletal muscle. Overall design: Soleus muscle mRNA profiles of db/db mice at 3 weeks after injection of AAV encoding shRNA targeting mouse Eda or the control scrambled shRNA sequence at the titer of 2-3x10e10 particles/body.

Publication Title

A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE46246
[E-MEXP-3786] IGF-I-induced chronic gliosis and retinal stress lead to neurodegeneration in an animal model of retinopathy
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Transcription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress

Publication Title

Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE61304
Novel bio-marker discovery for stratification and prognosis of breast cancer patients
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The study entails novel bio-marker discovery of Tumor Aggressive Grade signature (TAGs) genes and their role in recurrence free survival of breast cancer (BC) patients. Current BC dataset was used for co-expression analysis of TAGs genes and their role in BC progression. Additionally, recent findings have suggested an importance of structural organization of sense-antisense gene pairs (SAGPs) for transcription, post-transcriptional and post-translational events and their associations with cancer and disease. We studied SAGPs in which both gene partners are protein encoding genes (coding-coding SAGPs), their role in human BC development and demonstrated their potential for BC stratification and prognosis. Based on gene expression and correlation analyses we identified the robust set of breast cancer-relevant SAGPs (BCR-SAGPs). We isolated and characterized the sense-antisense gene signature (SAGS) and evaluated its prognostic potential in various gene expression datasets comprising 1161 BC patients. The methods used included the Cox proportional survival analysis, statistical analysis of clinicopathologic parameters and differential gene expression. The SAGS was effective in identification of BC patients with the most aggressive disease. Independently, we validated the SAGS using 58 RNA samples of breast cancer tumors purchased from OriGene Technologies (Rockville, MD).

Publication Title

Sense-antisense gene-pairs in breast cancer and associated pathological pathways.

Sample Metadata Fields

Age, Disease, Disease stage

View Samples
accession-icon GSE94867
Impact of short-term high fat diet regimen on hepatic transcriptome
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to unveil the gene expression alterations upon short-term HFD administration

Publication Title

Dietary alterations modulate susceptibility to Plasmodium infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP014760
TGF-beta/Smad2/3 signaling directly regulates several miRNAs in mouse ES Cells and early embryos
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Purpose: We aimed to identify miRNAs which are induced by the Activin/Nodal effectors, P-Smad2/3, in order to further our understanding of how P-Smad2/3 controls downstream gene expression in mouse ES cells to regulate crucial biological processes. Methods: We used a previously developed Tetracycline-On (Tet-On) system (TAG1) to manipulate the levels of P-Smad2/3 in mouse ES cells and performed an Illumina deep-sequencing screen to identify miRNAs which followed the P-Smad2/3 pathway. Results: We filtered the deep-seq data to identify a list of 28 miRNAs which showed a >1.25 fold increase in response to P-Smad2/3 induction and a >1.25 fold decrease in response to P-Smad2/3 repression. Conclusions: Our study represents a comprehensive global profiling of miRNA expression in response to changes in P-Smad2/3 levels in mouse ES cells. Overall design: miRNA profiles of TAG1 cells which were untreated (control), SB-431541 treated (P-Smad2/3 repressed), or Dox treated (P-Smad2/3 induced), were generated using Illumina GAII.

Publication Title

TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE24736
PTPN22 autoimmune susceptibility gene affects the removal of human developing autoreactive B cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene segregates with most autoimmune diseases; its risk allele encodes overactive PTPN22 phosphatases that alter B cell receptor (BCR) signaling potentially involved in the regulation of central B cell tolerance. To assess whether PTPN22 risk allele affects the removal of developing autoreactive B cells, we tested by ELISA the reactivity of recombinant antibodies isolated from single B cells from asymptomatic healthy individuals carrying one or two PTPN22 risk allele(s). We found that new emigrant/transitional and mature naive B cells from PTPN22 risk allele carriers contained high frequencies of autoreactive clones compared to non-carrier control donors. Hence, a single PTPN22 risk allele has a dominant effect on altering autoreactive B cell counterselection, suggesting that early B cell tolerance checkpoint defects precede the onset of autoimmunity. In addition, gene array experiments comparing mature nave B cells from healthy individuals carrying or not PTPN22 risk allele(s) revealed that the strength of association of PTPN22 for autoimmunity, second in importance only to the MHC, may not only be due to BCR signaling alteration but also to the regulation of other genes, which themselves have also been identified as involved in the development of autoimmune diseases.

Publication Title

The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13300
IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most autoreactive B cells are normally counterselected during early B cell development. To determine whether Toll-like receptors (TLRs) regulate the removal of autoreactive B lymphocytes, we tested the reactivity of recombinant antibodies from single B cells isolated from patients deficient for IL-1R-associated kinase (IRAK)-4, myeloid differentiation factor 88 (MyD88) and UNC-93B. Indeed, all TLRs except TLR3 require IRAK-4 and MyD88 to signal and UNC-93B-deficient cells are unresponsive to TLR3, TLR7, TLR8 and TLR9. All patients suffered from defective central and peripheral B cell tolerance checkpoints resulting in the accumulation of large numbers of autoreactive mature nave B cells in their blood. Hence, TLR7, TLR8, and TLR9 may prevent the recruitment of developing autoreactive B cells in healthy donors. Paradoxically, IRAK-4-, MyD88- and UNC-93B-deficient patients did not display autoreactive antibodies in their serum nor developed autoimmune diseases, suggesting that IRAK-4, MyD88 and UNC-93B pathway blockade may thwart autoimmunity in humans.

Publication Title

IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18882
Effect of cellular and viral miRNAs on target RNA half-life in three human B-cell lines
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Total, nascent and unlabeled RNA were prepared following 1h of labeling with 100 M 4-thiouridine and 3 replicates analyzed by Affymetrix Gene ST 1.0 arrays

Publication Title

Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17180
Identification of KSHV, EBV and cellular miRNA targets in human B-cells using RIP-Chip
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

RIP-Chip was performed on DG75-eGFP, DG75-10/12, BCBL-1, BL41, BL41 B95.8 and Jijoye using anti-human Ago2 (11A9) antibodies. Anti-BrdU antibodies were used as controls for DG75-eGFP, DG75-10/12 and BCBL-1. Total RNA was used as control for BL41, BL41 B95.8 and Jijoye. Samples were analyzed on Affymetrix Gene ST 1.0 Arrays (2 independent biological replicates / sample)

Publication Title

Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact