refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 159 results
Sort by

Filters

Technology

Platform

accession-icon SRP125173
Transcriptome-wide analysis of the RNA content of purified Nanoblades
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2500

Description

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology. Overall design: Virus-like particles were purified on a sucrose cushion. Total RNA was extracted using Trizol and fragmented to ~100 nucleotides and used as input for cDNA library preparation. PCR-amplified libraries were sequenced on the Hiseq2500 platform (Illumina)

Publication Title

Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP017604
GSE27623: Target RNA repertoire of mouse Mili and Miwi proteins reveals piRNA biogenesis and Miwi function in spermiogenesis
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

No description.

Publication Title

Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP119158
The abundantly expressed microRNA locus miR-144/451 regulates only about 100 target mRNAs during erythroid development [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

MicroRNAs inhibit gene expression by recruiting the RNA-induced silencing complex (RISC) to mRNAs in a process termed RNA interference (RNAi). While it is generally accepted that RNAi modulates gene expression pervasively, the number of mRNAs bound and repressed by miRNAs in vivo in individual cell types remains unknown, with estimates ranging from a few hundred genes to many thousands. We examined microRNA activities in primary cells by combining genetic loss of function with RNA-sequencing, quantitative proteomics and High-Throughput Sequencing of RNA isolated by Crosslinking Immunoprecipitation (HITS-CLIP), focusing on miR-144/451, the most highly expressed microRNA locus during red blood cell (RBC) formation. We show that Argonaute (Ago) protein binds over one thousand different mRNAs in a miR-144/451-dependent manner, accounting for one third of all Ago-bound mRNAs. However, only about 100 mRNAs are stabilized in RBC precursors after ablation of the miR-144/451 locus. Thus, Ago-miRNA complexes destabilize only a small subset of bound mRNAs, probably no more than a few hundred in erythroblasts under physiological conditions. Our integrated approach identified more than 50 new miR-144/451 target mRNAs, including Cox10, which facilitates assembly of the mitochondrial cytochrome c oxidase (COX) electron transport complex. Loss of miR-144/451 resulted in increased Cox10 expression, accumulation of the COX complex, and increased mitochondrial membrane potential with no change in mitochondrial mass. Thus, miR-144/451 represses mitochondrial respiration during erythropoiesis by inhibiting Cox10. Overall design: HITS-CLIP analysis of 3 WT mice fetal livers vs 3 miR-144/451 KO mice fetal livers

Publication Title

Regulation of gene expression by miR-144/451 during mouse erythropoiesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE3566
Enigma (CG9006) RNAi vs control RNAi in Drosophila Kc-167 cells.
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

5 day RNAi treatment to knockdown Enigma, CG9006, a Drosophila mitochondrial protein with homology to acyl-CoA dehydrogenases.

Publication Title

Enigma, a mitochondrial protein affecting lifespan and oxidative stress response in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52192
Transcriptional profiling of embryonic skeletal muscle stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Muscle stem cells (MuSC) change molecular and functional properties during development. Using a transgenic Tg:Pax7-nGFP mice, we FACS-isolated MuSC from embryonic (E12.5) and foetal (E17.5) stages to understand the differences and similarities amongst the myogenic stem/progenitor populations.

Publication Title

Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE95012
Loss of Cic leads to aberrant neural stem cell proliferation and differentiation and promotes gliomagenesis
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mouse neural stem cells were generated from conditional knockout mice (Cicflox/flox) or the wild trype control mice (Cic+/+). Cic is conditionally knocked out following expression of Cre-recombinase. Cre-recombinase was incorporated in vitro via adenoviral-Cre transduction.

Publication Title

<i>Cic</i> Loss Promotes Gliomagenesis via Aberrant Neural Stem Cell Proliferation and Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53072
Gene expression profilling of anaplastic thyroid carcinomas (ATC) and normal thyroid tissues
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

ATC are among the most lethal malignancies, for which there is no effective treatment.

Publication Title

Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE98424
Expression data from Hm mutant
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mouse Hammer toe (Hm) shows syndactyly. To reveal the molecular mechanisms of Hm phenotype, we performed microarray analysis to search differencially expressed genes in Hm limb.

Publication Title

Enhancer adoption caused by genomic insertion elicits interdigital <i>Shh</i> expression and syndactyly in mouse.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE111594
Whole-genome transcriptomic analysis of Notch1-expressing cells in mouse intestinal tumours
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To define and compare the genome-wide transcriptional signatures of Notch1+ cells in intestinal tumors and in normal ISCs we performed Affymetrix analyses of these two populations.

Publication Title

Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21863
Transcriptome of the Nxnl2-/- mouse retina
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A nxnl2 knockout mouse model was created and the transcriptome used to demonstrate that the retina is compromised by the absence of nxnl2.

Publication Title

Nxnl2 splicing results in dual functions in neuronal cell survival and maintenance of cell integrity.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact