When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. This study used an Affymetrix microarray platform to compare the transcriptomes of oral mucosa and skin wounds in order to identify critical differences in the healing response at these two sites.
Positional differences in the wound transcriptome of skin and oral mucosa.
Sex, Specimen part
View SamplesThe mechanisms by which the epidermis responds to disturbances in barrier function and restores homeostasis are unknown. With a disruption of the epidermal barrier, water is lost resulting in an increase in extracellular sodium concentration. We demonstrate that the sodium channel Nax functions as the sodium sensor. With increased extracellular sodium, Nax up-regulates prostasin which results in activation of the sodium channel ENaC, resulting in increased sodium flux and increased downstream mRNA synthesis of inflammatory mediators. The same pathways are present in lung epithelial cells.
Sodium channel Nax is a regulator in epithelial sodium homeostasis.
Sex, Specimen part, Cell line, Treatment, Time
View SamplesAnalysis of gene expression profile in peritoneal macrophage extracted from LPS or PBS challenged DUSP3-/- and WT mice. DUSP3 deletion protects mice from sepsis and endotoxemia. We performed a microarray analysis to get insights into the differentially regulated pathways between WT and KO under inflammatory conditions.
DUSP3 Genetic Deletion Confers M2-like Macrophage-Dependent Tolerance to Septic Shock.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.
Specimen part, Cell line
View SamplesMultiple myeloma (MM) is a malignant disorder characterized by the clonal proliferation of plasma cells (PCs) in the bone marrow (BM). The genetic background and clinical course of the disease are largely heterogeneous, and MM pathophysiology ranges from the premalignant condition of monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM, symptomatic MM, and extramedullary MM/plasma cell leukemia (PCL). Recent genome-wide sequencing efforts have provided the rationale for molecularly aimed treatment approaches, identifying mutations that can be specifically targeted, such as those in the mitogen-activated protein kinase (MAPK) pathway, which represent the most prevalent mutations in MM. Among these, mutations affecting BRAF gene, detected in 4-15% of patients, are of potential immediate clinical relevance due to the availability of effective inhibitors of this serine-threonine kinase which are in fact being explored also in myeloma.
Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.
Specimen part
View SamplesMultiple myeloma (MM) is a malignant disorder characterized by the clonal proliferation of plasma cells (PCs) in the bone marrow (BM). The genetic background and clinical course of the disease are largely heterogeneous, and MM pathophysiology ranges from the premalignant condition of monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM, symptomatic MM, and extramedullary MM/plasma cell leukemia (PCL). Recent genome-wide sequencing efforts have provided the rationale for molecularly aimed treatment approaches, identifying mutations that can be specifically targeted, such as those in the mitogen-activated protein kinase (MAPK) pathway, which represent the most prevalent mutations in MM. Among these, mutations affecting BRAF gene, detected in 4-15% of patients, are of potential immediate clinical relevance due to the availability of effective inhibitors of this serine-threonine kinase which are in fact being explored also in myeloma.
Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.
Specimen part, Cell line
View SamplesThe rates of obesity and sedentary lifestyle are on a dramatic incline, with associated detrimental health effects among women in particular. Although exercise prescriptions are useful for overcoming these problems, success can be hampered by differential responsiveness among individuals in cardiovascular fitness indices (i.e., improvements in strength, lipids, VO2max). Genetic factors appear to play an important role in determining this inter-individual variation in responsiveness. We performed microarray analyses on mRNA in whole blood from 60 sedentary women from a multi-ethnic cohort who underwent 12 weeks of exercise, to identify gene subsets that were differentially expressed between individuals who experienced the greatest and least improvements in fitness based upon a composite fitness score index. We identified 43 transcripts in 39 unique genes (FDR<10%; FC>1.5) whose expression increased the most in high versus low premenopausal female responders. Several (TIGD7, UQCRH, PSMA6, WDR12, TFB2M, USP15) have reported associations with fitness-related phenotypes. Bioinformatic analysis of the 39 genes identified 4 miRNAs whose expression has been linked to cardiovascular diseases (ANKRD22: miR-637, LRRFIP1: miR-132, PRKAR2B: miR-92a, RSAD2:miR-192). These 39 genes were enriched in 6 biological pathways, including the oxidative phosphorylation pathway (p=8.08 x 10-3). Two genes, LRRFIP1 and SNORD30, were also identified with lower expression in high responding postmenopausal women. In summary, we identified gene signatures based on mRNA analysis that define responsiveness to exercise in a largely minority-based female cohort. Importantly, this study validates several genes/pathways previously associated with exercise responsiveness and extends these findings with additional novel genes.
Genomic signatures of a global fitness index in a multi-ethnic cohort of women.
Sex, Race, Time
View SamplesAutoantibodies that arise in autoimmunity can be present years to decades prior to the onset of disease manifestations. This suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which then drives disease pathology in local tissues later in life. To explore the impact of early peripheral immune dysregulation on the progression of Sjgrens Syndrome, we blocked the CD40-CD40L pathway in young female NOD.H-2h4 mice at 4 weeks of age with a single injection of anti-CD40L antibody, and collected total salivary gland at the age of week 8, 16 and 24. RNA was extracted and submitted to transcriptome profiling using Affymetrix microarray.
Autoimmune manifestations in aged mice arise from early-life immune dysregulation.
Treatment
View SamplesBackground and aims: The transcription factor Stat3 has been considered to promote progression and metastasis of intestinal cancers.
Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice.
Sex, Specimen part
View SamplesThe bovine chromaffin cell (BCC) is a unique modela highly homogeneous and accessible neuroendocrine cellin which to study gene regulation through first messenger-initiated signaling pathways that are specific to post-mitotic cells. BCCs were treated with tumor necrosis factor (TNF) or pituitary adenylate cyclase activating polypeptide (PACAP), two critical regulators of neural cell transcriptional programming during inflammation that act on TNFR2 and PAC1 receptors, respectively, in post-mitotic neuroendocrine cells. Transcripts which were significantly up regulated by either or both first messenger were identified from microarray analysis using two bovine oligonucleotide arrays (Affymetrix and Agilent) followed by statistical analysis with Partek Genomic suite. Microarray data were combined from the two arrays using qRT-PCR sampling validation, and the first-messenger transcriptome derived from TNF and PACAP signaling were compared. More than 90 percent of the genes up regulated either by TNF or PACAP were specific to a single first messenger. BioBase suite, DIRE and Opossum were used to identify common promoter/enhancer response elements that control the expression of TNF- or PACAP-stimulated genes. Bioinformatic analysis revealed that distinct groups of transcription factors control the expression of genes up regulated by either TNF or PACAP . Most of the genes up regulated by TNF contained response elements for members of the Rel transcription factor family, suggesting TNF-TNFR2 signaling mainly through the NF-kB signaling pathway. On the other hand, the PACAP regulated genes showed no enrichment for any single response element, containing instead response elements for combinations of transcription factors allowing activation through multiple signaling pathways, including cAMP, calcium and ERK, in neuroendocrine cells. Pharmacological strategies for mimicking neuroprotection by either PACAP or TNF in the context of CNS injury or degeneration in disease might focus on individual downstream gene activation pathways to achieve greater specificity in vivo.
Neuropeptides, growth factors, and cytokines: a cohort of informational molecules whose expression is up-regulated by the stress-associated slow transmitter PACAP in chromaffin cells.
Specimen part
View Samples