refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 89 results
Sort by

Filters

Technology

Platform

accession-icon SRP119842
RNA Seq of Alagille liver biopsies
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Needle biopsies were performed to obtain liver samples from patients for clinical purposes from patients with Alagille syndrome. A small portion was snap frozen and later used for RNA sequencing analysis. Needle biospies from 5 patients with other liver disorders were included as controls. Overall design: Examination of RNA expression in Alagille patients'' liver samples, compared to other control liver samples (with other chronic liver diseases).

Publication Title

Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon SRP119844
RNA Seq of C2C12 cells stimulated with Control, Jag1-expressing or Jag1Ndr-expressing cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA sequencing of control or Notch1-expressing mouse cells co-cultured with control, Jag1WT, or Jag1Ndr-expressing human cells. Deep sequencing and bioinformatical separation of mouse and human reads reveals transcripts specifically regulated in mouse receptor-expressing cells. Overall design: Mouse C2C12 control and C2C12-FLNotch1, and human HEK-293-Flp-In cells (Hansson et al., 2010): HEK293-Flp control (Flp Ctrl), HEK293-Flp-Jag1WT (Flp Jag1+), HEK293-Flp-Jag1Ndr (Flp Jag1Ndr) were used in this experiment. In one 12-well plate, we seeded 3 wells of mouse C2C12 control cells and 3 wells of C2C12-FLN1 cells, with 3.6x105 cells in 1 mL antibiotic-free medium per well. Cells were allowed to settle for 8 hours. C2C12 control and C2C12-FLN1 cells were transfected with pcDNA5 (1.6 ug/well). All transfections were done using Lipofectamine® 2000 (InvitrogenTM, cat. no. 11668-019) with Opti-MEM® I Reduced Serum Medium (Gibco®, cat. no. 31985-062), according to manufacturer's instructions. The following day (18 hours post transfection), 3.6x105 cells in 0.5 mL antibiotic-free medium of Flp Ctrl, Flp Jag1+, or Flp Jag1Ndr cells were added. Cells were co-cultured for 6 hours, then lysed in 350 uL per well Buffer RLT (QIAGEN, cat. no. 79216) with 1% 2-Mercaptoethanol (Sigma-Aldrich®, cat. no. M3148) and stored at -80°C until RNA extraction.

Publication Title

Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP067960
Trascriptome of thyroid cancer-induced macrophages
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

RNA sequencing data of macrophages after differentiation in the presence of TPC1 thyroid cancer cell line Overall design: Co-incubation in trans-well system between TPC1 cell lines and human primary macrophages

Publication Title

Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33396
Mla-specified Transcriptional Responses in Barley-Powdery Mildew Interactions
  • organism-icon Hordeum vulgare
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

A large-scale parallel expression analysis was conducted to elucidate Mla-specified responses to powdery mildew infection using 22K Barley1 GeneChip probe arrays. Our goal was to identify genes differentially expressed in incompatible (resistant) vs. compatible (susceptible) and Mla-specified Rar1-dependent vs. -independent interactions. A split-split-plot design with 108 experimental units (3 replications x 2 isolates x 3 genotypes x 6 time points) was used to profile near-isogenic lines containing the Mla1, Mla6, and Mla13 resistance specificities in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6) and K1 (AvrMla1, AvrMla13). ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Rico Caldo. The equivalent experiment is BB4 at PLEXdb.]

Publication Title

Interaction-dependent gene expression in Mla-specified response to barley powdery mildew.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE14930
Comparison of wild-type and cell death mutant of barley plants containing Mla6 powdery mildew resistance gene
  • organism-icon Hordeum vulgare
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Time-course expression profiles of Bgh challenged barley cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast-neutron-derived "Bgh-induced tip cell death1" mutant, bcd1, were compared using the 22K Barley1 GeneChip. Planting, stage of seedlings, harvesting, and experimental design were part of a larger experiment described by Caldo et al. (2004). PLEXdb BB4. Experiment Design: C.I. 16151 (wildtype) and bcd1 (mutant) were planted in separate 20 x 30-cm flats using sterilized potting soil. Each experimental flat consisted of six rows of 15 seedlings, with rows randomly assigned to one of six harvest time points (0, 8, 16, 20, 24, and 32 hai). Seedlings grown to the 1st leaf stage with 2nd leaf unfolded were inoculated with a high density of fresh conidiospores (84 +/- 19 spores/mm2). Groups of flats were placed at 18C (8-hour darkness, 16-hour light) in separate controlled growth chambers corresponding to the Bgh isolates. Rows of plants were harvested at each assigned time points and snap frozen in liquid nitrogen. The entire experiment was repeated three times in a standard split-split-plot design with 72 experimental units (2 genotypes x 2 pathogen isolates x 6 time points x 3 replications). Treatment Description: The samples constituted pairwise combinations of the the cultivar C.I. 16151(containing the Mla6 resistance allele), and its fast-neutron-derived "Bgh-induced tip cell death1" mutant, bcd1 with the two Bgh (Blumeria graminis f. sp. hordei) isolates, 5874 (AvrMla6, AvrMla1) and K1 (AvrMla13, AvrMla1). For each replication, individual genotypes were planted in separate 20 x 30 cm flats using sterilized potting soil. Each experimental flat consisted of six rows of 15 seedlings, with rows randomly assigned to one of six harvest times (0, 8, 16, 20, 24, and 32 hai). Seedlings were grown to the 2nd-leaf stage with 1st leaf unfolded, and inoculation was performed at 4 PM Central Standard Time by tipping the flats at 45oC and dusting the plants with a high density of fresh conidiospores [84 +/- 19 spores/mm2]. This procedure was repeated from the opposite angle to ensure that a high proportion of the cells are in contact with the fungus. This conidial density per unit leaf area routinely results in greater than 50% of epidermal cells that are successfully infected. Groups of flats were placed at 18oC (8 hours darkness, 16 hours light, 8 hours darkness) in separate controlled growth chambers corresponding to the Bgh isolate. Rows of plants were harvested at their assigned harvest times and flash-frozen in liquid nitrogen. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Roger P Wise. The equivalent experiment is BB46 at PLEXdb.]

Publication Title

Interaction-dependent gene expression in Mla-specified response to barley powdery mildew.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon E-MEXP-142
Transcription profiling of barley Mla1, Mla6, and Mla13 resistance specificities in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6) and K1 (AvrMla1, AvrMla13)
  • organism-icon Hordeum vulgare
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

A large-scale parallel expression analysis was conducted to elucidate Mla-specified responses to powdery mildew infection using 22K Barley1 GeneChip probe arrays. Our goal was to identify genes differentially expressed in incompatible (resistant) vs. compatible (susceptible) and Mla-specified Rar1-dependent vs. -independent interactions. A split-split-plot design with 108 experimental units (3 replications x 2 isolates x 3 genotypes x 6 time points) was used to profile near-isogenic lines containing the Mla1, Mla6, and Mla13 resistance specificities in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6) and K1 (AvrMla1, AvrMla13).

Publication Title

Interaction-dependent gene expression in Mla-specified response to barley powdery mildew.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage, Cell line, Time

View Samples
accession-icon E-TABM-82
Transcription profiling of wild type and mutants of Sultan V barley plants
  • organism-icon Hordeum vulgare
  • sample-icon 180 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

A large-scale time course expression profiling of wild type (Mla12/Rar1/Rom1) and mutants (mla12-M66, M82 (rar1-1), M100 (rar1-2) and rom1) of barley cultivar Sultan 5 was conducted to understand the molecular mechanisms of delayed powdery mildew resistance. Barley plants were inoculated with powdery mildew pathogen isolate 5874. First leaves of inoculated and non-inoculated plants were harvested at six time points after pathogen inoculation. The experiment was laid out in split-split-plot design with 180 experimental units (3 replications x 2 treatments (inoculated and non-inoculated) x 5 genotypes x 6 time points).

Publication Title

Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE23881
Kinetic gene expression profiles of chicken macrophage HD11 cells in response to endotoxin from Salmonella typhimurium-798
  • organism-icon Gallus gallus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

HD11 cells were stimulated with 1 ug/ml endotoxin from ST-798 for 1, 2, 4 and 8 hours

Publication Title

Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP099453
RNA-sequencing of murine norovirus (MNV) infection and loxoribine (Lox) stimulation in RAW264.7 macrophages
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This study aimed to generate a comprehensive analysis of changes in the transcriptome following MNV infection. Furthermore, we aimed to perform a differential gene expression analysis between MNV infection and loxoribine (tlr7 agonist) treatment to delineate features of the host modified directly by the MNV as opposed to indirect changes induced through IFN signalling. Overall design: Transcript expression profiles of RAW264.7 cells mock infected, infected with MNV (MOI 5) or treated with loxoribine (1 mM) for 12 hrs were generated using Illumina NextSeq500.

Publication Title

RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP099423
RNA-sequencing of longitudinal murine norovirus (MNV) infection in RAW264.7 mouse macrophages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The transcriptome has an abundance of information about the function of individual cells, tissues and an organism in general. Characterising the transcriptome of virus infected cells can illuminate features of the viral-host relationship that are important for pathogenesis. This study broadly aimed to quantify the host gene expression changes that occur following MNV infection. Furthermore, we aimed to identify alterations in specific biological pathways by identifying alterations in transcript abundance that increase or decrease in intensity with MNV infection over time. Overall design: Transcript expression profiles of RAW264.7 cells mock infected or infected with MNV for 4, 8, 12, 16 and 20 hours (MOI 5) were generated by RNA-sequencing using Illumina NextSeq500.

Publication Title

RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation.

Sample Metadata Fields

Cell line, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact