refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 286 results
Sort by

Filters

Technology

Platform

accession-icon SRP062394
Identification of transcriptome of mouse non-neural ectoderm during nueral tube closure and gene enrichment compared to remaining neural tube tissue
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The process of neural tube closure is a highly complex morphogenetic event that results in the generation of the primordial central nervous system. During formation of the neural tube, the non-neural ectoderm separates from the neighboring neural ectoderm and forms a single layer epithelial sheet that overlies the closed neural tube. Previous work has shown that the non-neural ectoderm is necessary for proper cranial neural tube closure, however little is known about this cell population at the molecular level or how the non-neural ectoderm contributes to neural tube closure. In this study, we used a mouse genetic system to fluorescently label the non-neural ectoderm cells and FACS sorted these cells away from the other cell populations in the neural tube. We performed high throughput RNA-sequencing to identify the transcriptome of the non-neural ectoderm and compared the gene expression profile of non-neural ectoderm cells to the remaining population of cells within the neural tube in order to identify which genes are enriched within the non-neural ectoderm. This analysis provides a clue as to which underlying molecular processes may be important for non-neural ectoderm function during neural tube closure. Overall design: mTomato/mGFP dual fluorescent reporter mice were mated to Grhl3-cre mice to generate embryos that expressed a membrane-bound RFP throughout the embryo with specific expression of membrane-bound GFP in the Grhl3+ non-neural ectoderm. Embryos were dissected at 9.5 days post-fertilization and scored for correct genetic recombination. Non-neural tube tissue was dissected away and single cell suspensions were made followed by FACS to sort the GFP+ and RFP+ populations. RNA was isolated immediately and pooled samples of 1ug total RNA were used to generate libraries for sequencing with the Illumina TruSeq RNA sample preparation kit. Pooled RNA was generated from 25 individual embryos all aged betweed 21 and 25 somites. RNA-sequencing was performed on an Illumina HiSeq 2000.

Publication Title

Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9077
Expression profiles of immortal lung fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Activation of telomerase often endows cancer cells, but rarely normal somatic cells, with immortality. Especially, fetal lung fibroblasts are known to be hardly immortalized by TERT overexpression. We here established an immortal non-transformed lung fibroblast cell line only by TERT transfection, as well as an immortal transformed cell line by transfection of TERT and SV40 early antigens. Comparing the expression profiles of these cell lines with those of mortal cell strains with elongated lifespan after TERT transfection, 51 genes, including 19 upregulated and 32 downregulated, were explored to be the candidates responsible for regulation of cellular proliferation of lung fibroblasts. These included the genes previously reported to be involved in cellular proliferation, transformation, or self-renewal capacity, and those highly expressed in lung tissues obtained from patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis. This set of lung fibrobrast cell lines/strains of identical genetic background with different proliferative capacity, mortal and immortal non-transformed fibroblasts may become useful model cells for research on lung fibroblast growth regulation and the candidate genes explored in this study may provide promising biomarkers or molecular targets of pulmonary fibrosis.

Publication Title

Exploration of the genes responsible for unlimited proliferation of immortalized lung fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9967
Expression data from wildtype and C. elegan mutants
  • organism-icon Caenorhabditis elegans
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9896
Expression data from wildtype and gas-1 mitochondrial mutant C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Utilizing C. elegans as a model of mitochondrial dysfunction provides insight into cellular adaptations which occur as a consequence of genetic alterations causative of human disease. We characterized genome-wide expression profiles of hypomorhpic C. elegans mutants in nuclear-encoded subunits of respiratory chain complexes I, II and III.

Publication Title

Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9897
Expression data from 2 wildtype and 8 C. elegans ETC mutants
  • organism-icon Caenorhabditis elegans
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Utilizing C. elegans as a model of mitochondrial dysfunction provides insight into cellular adaptations which occur as a consequence of genetic alterations causative of human disease. We characterized genome-wide expression profiles of hypomorphic C. ele

Publication Title

Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31744
Comparison of Flk-1+/PDGFRa+(Flk-1PRa+(DP)) population from Etv2Het vs Etv2KO ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Screening for genes regulated by Etv2 within Flk-1+/PDGFRa+ ES derived mesoderm.Microarray analysis performed to screen for the candidate genes regulated by Etv2. TT2 ES cells differentiated on OP9 feeder cells were sorted using Flk-1 and PDGFRa antibodies.Gene expressions from these two populations were compared.

Publication Title

Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31743
Comparison of Flk-1+/Etv2- vs Flk-1+/Etv2+ populations
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Screening for genes up in Etv2+ cells within Flk-1+ ES derived mesoderm

Publication Title

Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27238
FACS-array profiling in retinal endothelial cells from living mouse retinas
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Deregulated retinal angiogenesis directly cause vision loss in many ocular diseases, such as diabetic retinopathy and retinopathy of prematurity. To identify endothelial-specific genes expressed in angiogenic retinal vessels, we purified genetically labeled endothelial cells from Tie2-GFP transgenic mice and performed gene expression profiling using DNA microarray. To find out genes associated with angiogenesis, comparisons of microarray data were carried out between GFP-negative non-endothelial retinal cells and GFP-positive retinal endothelial cells in angiogenic P8 retina.

Publication Title

Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE63129
Distinct phenotype and function of anergic CD8+ T cells produced by Treg-cell suppression.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Four conditions of cultured CD8+ T cells were analyzed with Affymetrix HG-U133-Plus-2.0 microarrays.

Publication Title

Detection of self-reactive CD8⁺ T cells with an anergic phenotype in healthy individuals.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25090
Gene Expression profiles of human iPS cells from CBC
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated that gene expression profile of generated human iPS cells from cord blood cells using temperature sensitive sendai-virus vector.

Publication Title

Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact