Purpose: Severe late normal tissue damage limits radiotherapy treatment regimens. This study aims to validate -H2AX foci decay ratios and induced expression levels of DNA double strand break (DSB) repair genes, found in a retrospective study, as possible predictors for late radiation toxicity. Methods and Materials: Prospectively, decay ratios (initial/residual -H2AX foci numbers) and genome-wide expression profiles were examined in ex vivo irradiated lymphocytes of 198 prostate cancer patients. All patients were followed 2 years after radiotherapy, clinical characteristics were assembled and toxicity was recorded using the Common Terminology Criteria (CTCAE) v4.0. Results: No clinical factors were correlated with late radiation toxicity. Analysis of -H2AX foci uncovered a negative correlation between the foci decay ratio and toxicity grade. Significantly smaller decay ratios were found in grade3 compared to grade 0 patients (p=0.02), indicating less efficient DNA-DSB repair in radio-sensitive patients. Moreover, utilizing a foci decay ratio threshold determined in our previous retrospective study correctly classified 23 of the 28 grade3 patients (sensitivity, 82%) and 9 of the 14 grade 0 patients (specificity, 64%). Grade of toxicity also correlated with a reduced induction of the homologous recombination (HR) repair gene-set. The difference in average fold induction of the HR gene-set was most pronounced between grade 0 and grade3 patients (p=0.008). Conclusions: Reduced responsiveness of HR repair genes to irradiation and inefficient DSB repair correlate with an increased risk of late radiation toxicity. Using a decay ratio classifier, we could correctly classify 82% of the patients with grade3 toxicity. Additional studies are required to further optimize and validate the foci decay assay and to assess its predictive value for late radiation toxicity in patients prostate cancer
Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination.
Specimen part, Subject
View SamplesBackground: Inter-patient prostate cancer (PrCa) heterogeneity results in highly variable patient outcomes. Multi-purpose biomarkers to dissect this heterogeneity are urgently required to improve treatment and accelerate drug development in PrCa. Circulating biomarkers are most practical for evaluating this disease. We pursued the analytical validation and clinical qualification of blood mRNA expression arrays.
Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study.
Subject
View Samples