This SuperSeries is composed of the SubSeries listed below.
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesEpigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesTo examine patterns of gene expression in ankle synovial fluid cells and peripheral blood leukocytes during serum transferred arthritis.
Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model.
Sex, Age, Time
View SamplesThe goal of the study was to compare gene expression of P0 wild-type and P0 Satb2-/- cortices. Total RNAs were isolated from P0 cortices dissected from wild-type and Satb2-/- mice (n=3 for each genotype), following Qiagen RNAeasy kit instruction.Sequence libraries were made following Illumina RNA TruSeq library preparation guide.The libaries were pair-end sequenced (50nt per end). Differentially expressed genes were identified by DESEQ. Overall design: Total RNAs were isolated from P0 cortices (3 control and 3 mutants), and sequenced on Illumina Genome Analyzer
Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex.
No sample metadata fields
View SamplesTo elucidate mechanisms of cancer progression, we generated inducible human neoplasia in 3-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends upon specific ECM-interacting network hubs. Blockade of one such hub, the b1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.
Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression.
Specimen part
View SamplesThe nematode Caenorhabditis elegans is an important model for studies of germ cell biology, including specification as sperm or oocyte, the meiotic cell cycle and gamete differentiation. Fundamental to those studies is a genome-level knowledge of the germline transcriptome. Here we use RNA-Seq to identify genes expressed in isolated XX gonads, which are roughly 95% germline and 5% somatic gonadal tissue. We generate data from mutants making either sperm [fem-3(q96)] or oocytes (fog-2), both grown at 22°C. Our dataset identifies a total of 10,754 mRNAs in the polyadenylated transcriptome of XX gonads, with 1,723 enriched in spermatogenic gonads, 2,869 enriched in oogenic gonads and the remaining 6,274 not enriched in either. These spermatogenic, oogenic and gender-neutral gene datasets compare well with those of earlier studies, but double the number of genes identified. We also query our RNA-Seq data for differential exon usage and find 351 mRNAs with sex-specific isoforms. We suggest that this new dataset will prove useful for studies focusing on C. elegans germ cell biology. Overall design: Comparison of spermatogenic vs oogenic transcriptomes
A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Network pharmacology of JAK inhibitors.
Sex, Age, Specimen part, Compound
View SamplesSmall molecule inhibitors of JAK kinases have shown clinical effcacy in the treatment of certain autoimmune diseases. While these are known to block upstream JAK signalling events, their broader impact on the transcriptional footprint in immunocytes are unknown. Here we explore the effects of pan- and isoform-specific JAK blockade on the immuno-genomic network by genomic profiling.
Network pharmacology of JAK inhibitors.
Sex, Age, Specimen part, Compound
View SamplesB cells respond robustly to type 1 interferons which signal through JAK1 and TYK2. Here we analyzed the effects of a panel of JAK inhibitors on the IFNa transcriptional response in activated B cells in vitro.
Network pharmacology of JAK inhibitors.
Sex, Age, Specimen part
View SamplesIL2 signals are transmitted through JAK1 and JAK3, but the transcriptomic consequences of each to the overall response is unclear. Here we analyzed the relative contribution of JAK1 and JAK3 to the NK cell IL2 response in vitro using titrated doses of isoform specific JAK inhibitors. Blockade of JAK1 and JAK3 have unequal effects on IL2-induced transcripts at pharmacologically relevant doses.
Network pharmacology of JAK inhibitors.
Sex, Age, Specimen part
View Samples