refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon SRP133642
Single cell RNA-sequencing of EpCAM-, CD45-, CD31- NG2- murine mammary tumor fibroblasts
  • organism-icon Mus musculus
  • sample-icon 768 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This study was conducted to determine heterogeneity of cancer-associated fibroblasts (CAFs) in mammary tumors, by unsupervised analysis of single cell transcriptomes. Overall design: 768 single EpCAM-, CD45-, CD31- NG2- fibroblasts were isolated from mammary tumors of two 14 week old MMTV-PyMT mice. The cells were sequenced following the Smart-Seq2 protocol (Picelli et al. Nature Methods 2013).

Publication Title

Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE50398
Global transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TCF7L2 is a master regulator of insulin production and processing.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50397
Global transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism [expression array]
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Here we harnessed the potential of expression arrays in 89 human pancreatic islet donors (different levels of blood glucose (HbA1c)) to identify genes regulated in this relevant tissue for type 2 diabetes (T2D).

Publication Title

TCF7L2 is a master regulator of insulin production and processing.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE68853
Identification of proliferative and mature -cells in the islet of Langerhans
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Insulin-dependent diabetes is a complex multifactorial disorder characterized by

Publication Title

Identification of proliferative and mature β-cells in the islets of Langerhans.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE34058
Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response.
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Maternal immune activation is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment with sub-sequence effects of CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on embryonic day 15. LPS significantly elevated pro-inflammatory cytokines in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-dams exhibited reduced social and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate possible molecular mechanisms by which MIA effects the fetal brain. We observed dysregulation of 3,285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons.

Publication Title

Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP169118
Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration
  • organism-icon Danio rerio
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Glucocorticoid drugs are widely used to treat immune-related diseases, but their use is limited by side effects and by resistance, which especially occurs in macrophage-dominated diseases. In order to improve glucocorticoid therapies, more research is required into the mechanisms of glucocorticoid action. In the present study, we have used a zebrafish model for inflammation to study glucocorticoid effects on the innate immune response. In zebrafish larvae, the migration of neutrophils towards a site of injury is inhibited by the synthetic glucocorticoid beclomethasone, while migration of macrophages is glucocorticoid resistant. RNA sequencing was done on on Fluorescence-Activated Cell Sorting (FACS)-sorted macrophages.The results show that the vast majority of the wounding-induced transcriptional changes in these cells are inhibited by beclomethasone, whereas a small subset is glucocorticoid-insensitive. As a result, beclomethasone decreases the number of macrophages that differentiate towards a pro-inflammatory (M1) phenotype, which we demonstrated using a tnfa:eGFP-F reporter line and analysis of macrophage morphology. We conclude that the glucocorticoid resistance of the wounding-induced macrophage migration is due to the insensitivity of the induction of macrophage-specific chemoattractants to glucocorticoid inhibition, which may explain the relative resistance of macrophage-dominated diseases to glucocorticoid therapy. However, the induction of pro-inflammatory genes in macrophages is strongly attenuated, which inhibits their differentiation to an M1 phenotype. Overall design: After anesthesia with 0.02% aminobenzoic acid ethyl ester (tricaine, Sigma Aldrich), the tails of 3 days post fertilization (dpf) embryos were partially amputated with a 1mm sapphire blade (World Precision Instruments) on 2% agarose-coated Petri dishes under a Leica M165C stereomicroscope (Chatzopoulou et al., 2016). Amputated and non-amputated (control) embryos were pretreated for 2 hours with 25 µM beclomethasone (Sigma Aldrich) or vehicle (0.05% dimethyl sulfoxide (DMSO)) in egg water prior to amputation and received the same treatment after the amputation. Macrophages were sorted from Tg(mpeg1.4:mCherry-F) embryos as previously described (Rougeot et al., 2014; Zakrzewska et al., 2010) at 4 hours post amputation (hpa). The sorted cells were collected in QIAzol lysis reagent (Qiagen) for RNA isolation. Extracted total RNA was amplified using the SMART-seq V4 kit (Clontech) for sequencing. The RNA seq libraries generated with the SMART-seq V4 kit were sequenced using an Illumina HiSeq 2500 instrument according to the manufacturer's instructions with a read length of 50 nucleotides.

Publication Title

Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE18833
Expression profiles of MDA-MB-231, MDA-231 S1a and S1b
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Identification of genes that are involved in self-seeding by comparing gene expression profiles between parental MDA-MB-231 cells and seeder cells (MDA-231-S1a and S1b)

Publication Title

Tumor self-seeding by circulating cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98265
Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE98237
Genes regulated by JNK signaling in MDA231-LM2 breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In advanced malignancies, cancer cells have acquired capabilities to resist a variety of stress-inducing insults. We show that c-Jun N-terminal kinase (JNK) stress signaling is highly active in cancer cells from patients with late stage breast cancer and promotes tumor growth and metastasis in mouse models. Transcriptomic analysis revealed that JNK activity induces genes associated with extracellular matrix (ECM), wound healing and mammary stem cells. The ECM proteins and niche components osteopontin (SPP1) and tenascin C (TNC) are induced by JNK signaling and promote metastatic colonization of the lungs. Notably, treatment with chemotherapeutic drugs induces JNK activity in breast cancer cells, reinforcing the production of SPP1 and TNC. Inhibition of JNK or reduction of SPP1 or TNC expression sensitizes primary tumors and metastases in mice to chemotherapy.

Publication Title

Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE98239
Gene expression data in MDA231-LM2 breast cancer cells cultured as oncospheres
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In advanced malignancies, cancer cells have acquired capabilities to resist a variety of stress-inducing insults. We show that c-Jun N-terminal kinase (JNK) stress signaling is highly active in cancer cells from patients with late stage breast cancer and promotes tumor growth and metastasis in mouse models. Transcriptomic analysis revealed that JNK activity induces genes associated with extracellular matrix (ECM), wound healing and mammary stem cells. The ECM proteins and niche components osteopontin (SPP1) and tenascin C (TNC) are induced by JNK signaling and promote metastatic colonization of the lungs. Notably, treatment with chemotherapeutic drugs induces JNK activity in breast cancer cells, reinforcing the production of SPP1 and TNC. Inhibition of JNK or reduction of SPP1 or TNC expression sensitizes primary tumors and metastases in mice to chemotherapy.

Publication Title

Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.

Sample Metadata Fields

Specimen part, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact