refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE7201
p73 inhibits malignant transformation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

sh RNA of p73 in Fibroblasts compared to non-silencing control

Publication Title

p73 poses a barrier to malignant transformation by limiting anchorage-independent growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62528
Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Physiologically, Notch signal transduction plays a pivotal role in differentiation; pathologically, Notch signaling contributes to the development of cancer. Transcriptional activation of Notch target genes involves cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD), and NICD migration into the nucleus and assembly of a coactivator complex. Posttranslational modifications of the NICD are important for its transcriptional activity and protein turnover. Deregulation of Notch signaling and stabilizing mutations of Notch1 have been linked to leukemia development. We found that the methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1; also known as PRMT4) methylated NICD at five conserved arginine residues within the C-terminal transactivation domain. CARM1 physically and functionally interacted with the NICD-coactivator complex and was found at gene enhancers in a Notch-dependent manner. Although a methylation-defective NICD mutant was biochemically more stable, this mutant was biologically less active as measured with Notch assays in embryos of Xenopus laevis and Danio rerio. Mathematical modeling indicated that full but short and transient Notch signaling required methylation of NICD.

Publication Title

Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP072837
Therapeutic targeting of GCB- and ABC-DLBCLs by rationally designed BCL6 inhibitors
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

BCL6 inhibitor induces derepression of BCL6 target genes and shows a similar transcriptional program to BCL6 siRNA Overall design: Genome-wide profiling of mRNA transcript levels in human DLBCL cell line with BCL6 inhibitor and DMSO control.

Publication Title

Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP073384
Therapeutic targeting of GCB- and ABC-DLBCL by rationally designed BCL6 inhibitor
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Rationale: The BCL6 oncogene is constitutively activated by chromosomal translocations and amplification in ABC-DLBCLs, a class of DLBCLs that respond poorly to current therapies. Yet the role of BCL6 in maintaining these lymphomas has not been investigated. BCL6 mediates its effects by recruiting corepressors to an extended groove motif. Development of effective BCL6 inhibitors requires compounds exceeding the binding affinity of these corepressors. Objectives: To design small molecule inhibitors with superior potency vs. endogenous BCL6 ligands for unmet putative therapeutic needs such as targeting ABC-DLBCL. Findings: We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor with 10-fold greater potency than endogenous corepressors. The compound, called FX1, binds in such a way as to occupy an essential region of the BCL6 lateral groove. FX1 disrupts BCL6 repression complex formation, reactivates BCL6 target genes, and mimics the phenotype of mice engineered to express BCL6 with lateral groove mutations. This compound eradicated established DLBCLs xenografts at low doses. Most strikingly, FX1 suppressed ABC-DLBCL cells as well as primary human ABC-DLBCL specimens ex vivo. Conclusions: ABC-DLBCL is a BCL6 dependent disease that can be targeted by novel inhibitors able to exceed the binding affinity of natural BCL6 ligands. Overall design: gene expression profiles of DLBCL cases

Publication Title

Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact