refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon SRP066839
Determine the effects of Hdac3 deletion on H3K27ac profiles in murine chondrocytes[RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Histone deacetylase inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, these drugs inhibit multiple Hdacs and have detrimental effects on the pre- and post-natal skeleton. To better understand how Hdac inhibitors affect the skeleton, we focused on understanding the role of one of their targets, Hdac3, in endochondral bone formation by deleting it in immature murine chondrocyte micro masses with Adeno-Cre. Hdac3-deficient chondrocytes expressed higher levels of pro-inflammatory and matrix degrading genes (e.g., Il-6, Mmp3, Mmp13, Saa3) and lower levels of genes related to the extracellular matrix production, bone development and ossification (e.g., Acan, Col2a1, Ihh, Col10a1). Histone acetylation was increased in and around genes with elevated expression. Overall design: High Throughput RNA sequencing and Chromatin immunopreciptation sequencing experiments were performed in chondrocyte cultures. Differential analysis was conducted on ChIP-seq and RNA-seq data to identify H3K27Ac profile for up and down regulated genes in Hdac3-deficient murine chondrocytes.

Publication Title

Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE29175
Expression data from ovarian cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Ovarian clear cell carcinoma (OCCC) shows unique clinical features including an association with endometriosis and poor prognosis. We previously reported that the contents of endometriotic cysts, especially high concentrations of free iron, are a possible cause of OCCC carcinogenesis through iron-induced persistent oxidative stress. In this study, we conducted gene expression microarray analysis using 38 ovarian cancer cell lines and identified genes commonly expressed in both OCCC cell lines and clinical samples, which comprise an OCCC gene signature. The OCCC signature reproducibly predicts OCCC specimens in other microarray data sets, suggesting that this gene profile reflects the inherent biological characteristics of OCCC. The OCCC signature contains known markers of OCCC, such as hepatocyte nuclear factor-1b (HNF-1b) and versican (VCAN), and other genes that reflect oxidative stress. Expression of OCCC signature genes was induced by treatment of immortalized ovarian surface epithelial cells with the contents of endometriotic cysts, indicating that the OCCC signature is largely dependent on the tumor microenvironment. Induction of OCCC signature genes is at least in part epigenetically regulated, as we found hypomethylation of HNF-1b and VCAN in OCCC cell lines. This genomewide study indicates that the tumor microenvironment induces specific gene expression profiles that contribute to the development of distinct cancer subtypes.

Publication Title

Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE26037
Gene expression analysis in the absence of Creb in Pomc-expressing neurons of the hypothalamus
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Brain-derived serotonin favors appetite in mice following its binding to the Htr1a and Htr2b receptors in arcuate neurons of the hypothalamus. In this study, we identified that CREB is the transcriptional effector of brain-derived serotonin control of appetite in arcuate nuclei.

Publication Title

Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE66782
Genome-wide analysis of LPS or PBS challenged DUSP3-KO and WT female mice peritoneal macrophages gene expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of gene expression profile in peritoneal macrophage extracted from LPS or PBS challenged DUSP3-/- and WT mice. DUSP3 deletion protects mice from sepsis and endotoxemia. We performed a microarray analysis to get insights into the differentially regulated pathways between WT and KO under inflammatory conditions.

Publication Title

DUSP3 Genetic Deletion Confers M2-like Macrophage-Dependent Tolerance to Septic Shock.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE27120
Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: There is growing evidence that interaction between stromal and tumor cells is pivotal in breast cancer progression and response to therapy. Since the pioneer work of Allinen et al. suggested that during breast cancer progression striking changes occur in CD10+ stromal cells, we aimed to better characterize this cell population and its clinical relevance.

Publication Title

Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact