Avian pathogenic Escherichia coli strains frequently cause extra-intestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E.coli strains and may also act as pathogens for humans. In this work, three type VI secretion systems were deleted to analyze which pathogenicity characteristics would change in the mutants, compared to wild type strain (SEPT 362).
The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain.
No sample metadata fields
View SamplesWe used microarrays to detail the global program of gene expression underlying rRNA processing gene regulation during heat shock. PBF1 is YBL054W (TOD6) and PBF2 is YER088C (DOT6).
High-resolution DNA-binding specificity analysis of yeast transcription factors.
No sample metadata fields
View SamplesThe experiment describes the dynamic transcriptional alterations in brains of ME7- infected, and age-matched, mock-inoculated mice immediatly before inoculation, at two important preclinical time points and at terminal stages.
Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model.
Sex, Age, Specimen part, Subject, Time
View SamplesThe histone methyltransferase Suv39h1 silences transcriptional programs during CD8+-T cell differentiation
The epigenetic control of stemness in CD8<sup>+</sup> T cell fate commitment.
Specimen part
View SamplesSickle cell disease (SCD) results from a point mutation in the ß-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)–like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell–derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate ?-globin transcription and enhance HbF in tissue culture, murine and primate models. DMF recruited Nrf2 to the ?-globin promoters and the locus control region of the ß-globin locus in erythroleukemia cells, elevated HbF in SCD donor–derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased ?-globin mRNA in BM and HbF protein in red cells. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification Overall design: RNA-Seq of 30 samples
Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.
Age, Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.
Specimen part
View SamplesThe preferential localization of some neoplasms, such as serrated polyps, in specific areas of the intestine suggests that non-genetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine, but develop serrated polyps only in the cecum.
Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.
Specimen part
View SamplesRORt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.
RORγt⁺ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44.
Specimen part, Treatment
View SamplesBipolar disorder (BD) is a highly heritable and heterogeneous mental illness whose manifestations often include impulsive and risk-taking behavior. This particular phenotype suggests that abnormal striatal function could be involved in BD etiology, yet most transcriptomic studies of this disorder have concentrated on cortical brain regions. We report the first transcriptome profiling by RNA-Seq of the human dorsal striatum comparing bipolar and control subjects. Differential expression analysis and functional pathway enrichment analysis were performed to identify changes in gene expression that correlate with BD status. Further co-expression and enrichment analyses were performed to identify sets of correlated genes that show association to BD. Overall design: Total RNA samples were isolated from 36 postmortem dorsal striatum subjects (18 bipolar and 18 control) and sequenced. One outlier sample was removed and 35 samples (18 bipolar and 17 control) were analyzed.
Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder.
Sex, Subject
View SamplesHeritable genetic variants modify cystic fibrosis (CF) clinical phenotypes, e.g., lung disease, age-of-onset of persistent Pseudomonas aeruginosa (P. aeruginosa), and meconium ileus (MI). Previous genome wide association studies (GWAS) have begun to inform the genetic architecture of CF phenotypes. Analyses of gene expression will complement GWAS, as demonstrated by analyses of gene expression in lymphoblastoid cell lines (LCLs) to identify disease-related pathophysiological processes for non-CF complex traits. In this study, global gene expression was measured in RNA from LCLs from 754 CF patients and analyzed for association with lung disease severity, age-of-onset of persistent P. aeruginosa pulmonary infection, and MI at birth. Each phenotype displayed distinct expression associations. Most pathways significantly associated with lung disease were related to membranes, vesicle traffic, and Golgi/endoplasmic reticulum (ER). Pathways containing HLA genes (Class I and II) were significantly associated with both lung and P. aeruginosa phenotypes, but they displayed qualitative differences between phenotypes. MI associated with pathways involving oxidative phosphorylation. The results support the concept that gene expression associated with heritable variation acts to modify phenotypes in CF.
Gene expression in transformed lymphocytes reveals variation in endomembrane and HLA pathways modifying cystic fibrosis pulmonary phenotypes.
Sex
View Samples