Autism spectrum disorder (ASD) is a disorder of brain development believed, in most cases, to be of genetic origin. We use induced pluripotent stem cells (iPSCs)-derived 3-dimensional neural cultures (organoids) in patients with ASD and macrocephaly to investigate neurodevelopmental alterations that cause this form of ASD. By using transcriptome analyses, we identified modules of co-expressed genes significantly upregulated in ASD patients compared to non-ASD first-degree family members. Overall design: Total RNA was prepared from terminal differentiation day 0, 11 and 31 of iPSCs-derived neural cultures from ASD patients and non-ASD first-degree family members. A total of 4 patients and 8 controls (unaffected family members) were analyzed in replicates (two to three iPSC clones per person).
FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders.
No sample metadata fields
View SamplesReprogramming human somatic cells into induced pluripotent stem cells (iPSC) has been suspected of causing de novo copy number variations (CNVs). To explore this issue, we performed a whole-genome and transcriptome analysis of 20 human iPSC lines derived from primary skin fibroblasts of 7 individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two CNVs not apparent in the fibroblasts from which the iPSC was derived. Using qPCR, PCR, and digital droplet PCR (ddPCR) to amplify across the CNVs'' breakpoints, we show that at least 50% of those CNVs are present as low frequency somatic genomic variants in parental fibroblasts and are manifested in iPSC colonies due to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSC, since most of line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. Overall design: We have generated and characterized hiPSC lines derived from skin fibroblasts collected from seven members of two families, which were competent to be differentiated into neuronal progenitors and neurons
Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.
Specimen part, Subject
View SamplesMHC class I-related molecule MR1 presents riboflavin-derived microbial metabolites and folate-derivatives to mucosal-associated invariant T cells, but it is unknown whether MR1 can bind alternative antigens that stimulate other T cell lineages. Here we report that human T cells displaying diverse TCR-a and ß chains recognize MR1-expressing cells in the absence of microbial ligands and respond to recombinant MR1 molecules loaded with antigens extracted from stimulatory targets. Transcriptome analysis revealed functional heterogeneity of MR1-reactive T cells (MR1T cells), which displayed differential expression of various transcription factors regulating T cell polarization, proliferation and apoptosis. Accordingly, MR1T cells displayed multiple profiles of chemokine receptor expression and secreted variable combinations of cytokines and growth factors, suggesting a diversity of immunological roles across numerous tissues. Functionally, MR1T cells were capable of inducing dendritic cell maturation and stimulating anti-microbial responses in intestinal epithelial cells. These data demonstrate that MR1 presents endogenous antigens to a novel population of functionally diverse human T cells. Overall design: mRNA profiles of two representative MR1T cell clones in resting (not exposed to antigen) and activated (stimulated with A375-MR1 antigen target cells and activated) states
Functionally diverse human T cells recognize non-microbial antigens presented by MR1.
Specimen part, Subject
View SamplesAnalysis of mRNA expression of influenza infected and uninfected pulmonary epithelial cells in vivo Overall design: Analysis of mRNA expression of influenza infected and uninfected pulmonary epithelial cells in vivo
Long-term survival of influenza virus infected club cells drives immunopathology.
No sample metadata fields
View SamplesMucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here, we show via transcriptomic analysis that human MAIT cells are remarkably oligoclonal in both blood and liver, display high inter-individual homology, and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Overall design: Study of CDR3 regions of TCRalpha and beta sequences
Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire.
No sample metadata fields
View SamplesAnaplastic Large Cell Lymphomas (ALCL) represent a subset of lymphomas in which the Anaplastic Lymphoma Kinase (ALK) gene is frequently fused to the NPM gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo, and that ALK activity is strictly required for the survival of ALK positive ALCL cells. To elucidate the signaling pathways required for ALK-mediated transformation and tumor maintenance, we analyzed the transcriptomes of multiple ALK positive ALCL cell lines abrogating their ALK-mediated signaling by inducible ALK RNA interference (RNAi) or with potent and cell permeable ALK inhibitors. Transcripts derived from the gene expression profiling (GEP) analysis uncovered a reproducible signature, which included a novel group of ALK-regulated genes. Functional RNAi screening on a set of these ALK transcriptional targets revealed that the transcription factor C/EBPb and the anti-apoptotic protein BCL2A1 are absolutely necessary to induce cell transformation and/or to sustain the growth and survival of ALK positive ALCL cells. Thus, we proved that an experimentally controlled and functionally validated GEP analysis represents a powerful tool to identify novel pathogenetic networks and validate biologically suitable target genes for therapeutic interventions.
Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes.
No sample metadata fields
View SamplesThe role of antibody and B cells in preventing infection is established. In contrast, the role of B cell responses in containing chronic infections remains poorly understood. IgG2a (IgG1 in humans) can prevent acute infections and T-bet promotes IgG2a isotype switching. However, whether IgG2a and B cell-expressed T-bet influence the host-pathogen balance during persisting infections is unclear. Here we demonstrate that B cell specific loss of T-bet prevents control of persisting viral infection. T-bet in B cells not only controlled IgG2a production, but also mucosal localization, proliferation, glycosylation, and a broad transcriptional program. T-bet controlled a broad antiviral program in addition to IgG2a since T-bet in B cells was important even in the presence of virus-specific IgG2a. Our data supports a model in which T-bet is a universal controller of antiviral immunity across multiple immune lineages.
Cutting Edge: B Cell-Intrinsic T-bet Expression Is Required To Control Chronic Viral Infection.
Specimen part
View SamplesForced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).
Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).
Specimen part, Treatment, Subject
View SamplesDuring sexual dimorphism, the loss of one entire X chromosome in Drosophila males is achieved largely via a broad genome-wide aneuploid effect. Exploring how MSL proteins and two large non coding RNAs (roX1 and roX2) modulate trans-acting aneuploid effect for equality to females, we employ a system biology approach (microarray) to investigate the global aneuploid effect of maleless(mle) mutation by disrupting MSL binding. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located in the autosomes of Drosophila melanogaster.
Drosophila maleless gene counteracts X global aneuploid effects in males.
No sample metadata fields
View SamplesPompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease.
Transcriptional response to GAA deficiency (Pompe disease) in infantile-onset patients.
Sex, Specimen part, Disease, Treatment, Subject
View Samples