refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 587 results
Sort by

Filters

Technology

Platform

accession-icon GSE44250
Gene expression analysis of rice seedling under potassium deprivation
  • organism-icon Oryza sativa indica group
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Potassium is one of the essential macronutrients required for plant growth and development. It plays a major role in different physiological processes like cell elongation, stomatal movement, turgor regulation, osmotic adjustment, and signal transduction by acting as a major osmolyte and component of the ionic environment in the cytosol and subcellular organelles.

Publication Title

Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon E-MEXP-886
Transcription profiling by array of cerebellum from ataxin1 knock-out mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Ataxin 1 (Atxn1) is a protein of unknown function associated with cerebellar neurodegeneration in spinocerebellar ataxia type 1 (SCA1). SCA1 is caused by an expanded polyglutamine within Atxn1 by gain-of-function mechanisms. Lack of Atxn1 in mice triggers motor deficits in the absence of neurodegeneration or apparent neuropathological abnormalities.We extracted RNA from cerebellum of 5 Atxn1-null mice and 5 WT. Cerebellar gene expression profiles at 15 weeks of age were generated usSCA1 ing Affymetrix MOE430A arrays. Identifying the molecular pathways regulated by Atxn1 can provide insights into the early molecular mechanisms underlying neuronal dysfunction.

Publication Title

Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE10745
HDAC Inhibitors Correct Frataxin Deficiency in a Friedreich Ataxia Mouse Model
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Background: Friedreich ataxia, an autosomal recessive neurodegenerative and cardiac disease, is caused by abnormally low levels of frataxin, an essential mitochondrial protein. All Friedreich ataxia patients carry a GAA/TTC repeat expansion in the first intron of the frataxin gene, either in the homozygous state or in compound heterozygosity with other loss-of-function mutations. The GAA expansion inhibits frataxin expression through a heterochromatin-mediated repression mechanism. Histone modifications that are characteristic of silenced genes in heterochromatic regions occur at expanded alleles in cells from Friedreich ataxia patients, including increased trimethylation of histone H3 at lysine 9 and hypoacetylation of histones H3 and H4.

Publication Title

HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP110714
Transcription factor Foxo1 is essential for IL-9 induction in T helper cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Interleukin 9 (IL-9) producing helper T (Th9) cells play a crucial role in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune response. In addition to Th9, Th2, Th17 and Foxp3+ Treg cells produce IL-9. Transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that Foxo1, a forkhead family transcription factor, requires for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTregs. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells. Overall design: Transcriptional analysis of Th0 and TGF-beta 1 + IL-4 induced Th9 cells

Publication Title

Transcription factor Foxo1 is essential for IL-9 induction in T helper cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE27947
Identification of differentially regulated genes in hematopoietic stem cells and URE leukemia cell line
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

H2.0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE27309
SIRT3 opposes metabolic reprogramming of cancer cells through HIF1a destabilization
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates and redox potential required for the generation of biomass. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. SIRT3 loss promotes a metabolic profile consistent with high glycolysis required for anabolic processes in vivo and in vitro. Mechanistically, SIRT3 mediates metabolic reprogramming independently of mitochondrial oxidative metabolism and through HIF1a, a transcription factor that controls expression of key glycolytic enzymes. SIRT3 loss increases reactive oxygen species production, resulting in enhanced HIF1a stabilization. Strikingly, SIRT3 is deleted in 40% of human breast cancers, and its loss correlates with the upregulation of HIF1a target genes. Finally, we find that SIRT3 overexpression directly represses the Warburg effect in breast cancer cells. In sum, we identify SIRT3 as a regulator of HIF1a and a suppressor of the Warburg effect.

Publication Title

SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27938
Identification of differentially regulated genes upon overexpression of HLX in wild-type hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal was to study the role of Hlx in hematopoiesis.

Publication Title

H2.0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27939
Identification of differentially regulated genes upon shRNA-mediated knock-down of HLX in the URE leukemia cell line
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To study the role of Hlx in hematopoietic differentiation and tumorigenesis, URE cells were infected with short-hairpin-containing pSIH1-H1-copGFP lentiviral vector (System Biosciences, Mountain View, CA) containing either nucleotide sequences targeting luciferase (shControl) or HLX (shHLX). After 24hrs incubation in Iscoves modified Dulbeccos medium (IMDM) containing FBS, mIL-3, mIL-6 and mSCF with lentiviral supernatants in the presence of 8ug/ml polybrene, cells were cultured in fresh medium for several days. Subsequently, GFP+ cells were sorted by FACS and RNA was prepared.

Publication Title

H2.0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE82179
Ornithine decarboxylase is sufficient for prostate tumorigenesis via androgen receptor signaling
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Ornithine decarboxylase is sufficient for prostate tumorigenesis via androgen receptor signaling

Publication Title

Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055573
RNA-seq of zebrafish brain, liver and skin during perturbation with rotenone at young and old age
  • organism-icon Danio rerio
  • sample-icon 68 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Zebrafish of two different age groups (12 and 36 months) were treated with low amounts of rotenone (mild stress) and compared to untreated zebrafish. Two different durations were used (3 and 8 weeks). Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 68 sample: 3 tissues (brain, liver, skin); 2 age groups (12 and 36 months); controls and rotenone treated samples; 2-6 biological replicates for each group

Publication Title

Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact