refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 695 results
Sort by

Filters

Technology

Platform

accession-icon GSE8599
Expression data from transgenic mice (3 mo) inducibly expressing human alpha1-antitrypsin in the liver
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

In the classical form of 1antitrypsin deficiency a mutant protein accumulates in a polymerized form in the ER of liver cells causing liver damage and carcinogenesis by a gain-of-toxic function mechanism. Recent studies have indicated that the accumulation of mutant 1antitrypsin Z in the ER specifically activates the autophagic response but not the unfolded protein response and that autophagy plays a critical role in disposal of insoluble 1antitrypsin Z. In this study, we used genomic analysis of the liver in a novel transgenic mouse model with inducible expression to screen for changes in gene expression that would potentially define how the liver responds to accumulation of this mutant protein.

Publication Title

Regulator of G Signaling 16 is a marker for the distinct endoplasmic reticulum stress state associated with aggregated mutant alpha1-antitrypsin Z in the classical form of alpha1-antitrypsin deficiency.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8600
Expression data from transgenic mice (6 wk) inducibly expressing human alpha1-antitrypsin in the liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

In the classical form of 1antitrypsin deficiency a mutant protein accumulates in a polymerized form in the ER of liver cells causing liver damage and carcinogenesis by a gain-of-toxic function mechanism. Recent studies have indicated that the accumulation of mutant 1antitrypsin Z in the ER specifically activates the autophagic response but not the unfolded protein response and that autophagy plays a critical role in disposal of insoluble 1antitrypsin Z. In this study, we used genomic analysis of the liver in a novel transgenic mouse model with inducible expression to screen for changes in gene expression that would potentially define how the liver responds to accumulation of this mutant protein.

Publication Title

Regulator of G Signaling 16 is a marker for the distinct endoplasmic reticulum stress state associated with aggregated mutant alpha1-antitrypsin Z in the classical form of alpha1-antitrypsin deficiency.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2443
Prostate cancer - comparison of androgen-dependent and -independent microdissected primary tumor
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Affymetrix U133A comparison of two groups (10 samples each): untreated (androgen-dependent) primary prostate cancer (Gleasons 5-9) and androgen-independent primary prostate cancer. All samples were microdissected for tumor cells only.

Publication Title

Molecular alterations in primary prostate cancer after androgen ablation therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP095625
Generation of muscle stem cells from pluripotent stem cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We have developed a method to generate muscle stem cells from pluripotent stem cells via teratoma formation. The goal of this study is to compare the transcriptome of a7+ VCAM+ myogenic cells derived from pluripotent stem cells versus satellite cells Overall design: RNA from a7+ VCAM+ myogenic cells derived from teratoma, transplanted muscles, E14.5 mouse embryos, and hindlimbs of 8-week-old mice. In 3 biological replicates

Publication Title

Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE37658
Gene expression analysis of inducible ES cells overexpressing Etv2 (induced for 12 hours at day 3 of differentiation)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages, however, the precise roles of Etv2 in yolk sac development remains unclear.

Publication Title

Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE103380
Gene expression of microglia from nave or MHV infected mouse brains
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Microglia are the brain-resident myeloid cells of the parenchyma. We study the roles microglia play in response to virus infection.

Publication Title

Microglia are required for protection against lethal coronavirus encephalitis in mice.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE103379
Gene expression of macrophages isolated from mouse brains
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Hematogenous macrophages infiltrate the brain after virus infection. We use a CSF1R inhibitior, PLX5622 to deplete microglia from the brain. However, macrophages also express the CSF1R and may be affected by PLX5622-treatment of mice.

Publication Title

Microglia are required for protection against lethal coronavirus encephalitis in mice.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE25846
Expression data from IL-10+ and IL-10- CD8 T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

IL-10 is an anti-inflammatory cytokine that has been shown to be produced by antigen-specific CD8 T cells at the peak of viral encephalitis. We found that IL-10+CD8 T cells are more activated and cytolytic than IL-10-CD8 T cells.

Publication Title

Highly activated cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-induced encephalitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP082416
Whole transcriptome analysis of reaggregated embryoid bodies treated with IWR-1
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We identified distict mesodermal sub-populations based on Endoglin (Eng) and Flk1 expression in Brachyury (Bry) positive cells. By using whole-transcriptome analysis, we further characterized these populations and how they changed when Wnt pathway is inhibited Overall design: Reaggregates mRNA profiles of unsorted, Flk1+ Eng+, and Flk1- Eng+ samples were generated by deep sequencing, in triplicate , using Ilumina.

Publication Title

Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE79417
Expression data of Brain CD45+ cells from WT and STI knockout mice after WNV infection
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

West Nile virus (WNV) is the most important cause of endemic encephalitis in the USA. Strikingly, only a small percentage of patients develop clinical disease and of these patients, approximately 1 out of 150 patients develops encephalitis. The basis for this great variability in disease outcome is unknown, but may be related to the innate immune response. Innate immune responses, critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors (PRR) such as RIG-I and MDA5. IPS-1 is a key adaptor in generating a PRR-dependent interferon response.. Here we show that IPS-1 deficiency in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In IPS-1-/- mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were multifunctional and were able to lyse peptide-pulsed target cells in vitro. However, virus-specific T cells in the infected IPS-1-/- brain exhibited lower functional avidity than those in C57BL/6 brains, possibly contributing to less efficient virus clearance. The presence of virus-specific memory T cells was also not protective. We also show that macrophages were increased in numbers in the IPS-1-/- brain. Both macrophages and microglia exhibited an activated phenotype. Microarray analyses showed the preferential upregulation of genes associated with leukocyte activation and inflammation. Together, these results demonstrate the critical role that hematopoietic cell expression of Type 1 interferon and other IPS-1-dependent molecules have in WNV clearance and in regulating the inflammatory response.

Publication Title

MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact