In the ovarian follicle, maturation of the oocyte increases in the presence of somatic cells called cumulus cells (CCs). These cells form a direct barrier between the oocyte and external environment. Thanks to bidirectional communication, they have a direct impact on the oocyte, its quality and development potential. Understanding the genetic profile of CCs appears to be important in elucidating the physiology of oocytes. In this work, CCs were subjected to in vitro long-term culture. RNA was collected after 1, 7, 15 and 30 days of culture. Expression microarrays were used for analysis, which allowed to identify groups of genes characteristic for particular cellular processes.
Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers.
Sex, Specimen part
View SamplesPhysiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO2-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO2 and 21% O2. This observation indicated that respiratory metabolism is more sensitive to CO2 than fermentative metabolism. Consistent with the more pronounced physiological effects of CO2 in respiratory cultures, the number of CO2-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO2 concentrations. This is consistent with an uncoupling effect of CO2 and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO2 included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase
Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations.
No sample metadata fields
View SamplesIt It is known that functional maturation of the small intestine occurring during the weaning period is facilitated by glucocorticoids (such as hydrocortisone, HC) including the increased expression of digestive hydrolases. However, the molecular mechanism(s) are not well understood, particularly in human gut. Here we report a microarray analysis of HC- induced changes in gene expression in H4 (a human fetal small intestinal epithelial cell line well-characterized in numerous previous studies). This study identified a large number of HC-affected genes, some involved in metabolism, cell cycle regulation, cell polarity, tight junction formation, and interactions with extracellular matrices. These effects could play an important role in HC-mediated enterocyte maturation in vivo and in vitro.
Hydrocortisone induces changes in gene expression and differentiation in immature human enterocytes.
Cell line, Treatment
View SamplesHematopoietic progenitor and stem cells from bone marrow have been sorted by FACS (LSK, Lineage -, Sca1 + and cKit +) and co-culture during 18h without cytokines with or without extracellular vesicles (EV) secreted by AFT stromal cells.
Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells.
Specimen part
View SamplesIn this work, we isolated and characterized a novel cell population derived from human amniotic fluid cells (hAKPC-P), and we differentiated them into podocytes.
A novel source of cultured podocytes.
Specimen part, Cell line
View SamplesEffect of the ablation of connexin 30 in the stria vascularis
Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis.
Age, Specimen part, Disease, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesThese studies adress differential changes in gene expression between sleep deprived and control mice. We profiled gene expression at four time points across the 24H Light/Dark cycle to take into account circadian influences and used three different inbred strains to understand the influence of genetic background.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesThese studies adress differential changes in gene expression between 6h sleep deprived and control mice in the brain and the liver. We profiled gene expression in three different inbred strains to understand the influence of genetic background.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesTo gain insight into the molecular changes of sleep need, this study addresses gene expression changes in a subpopulation of neurons selectively activated by sleep deprivation. Whole brain expression analyses after 6h sleep deprivation clearly indicate that Homer1a is the best index of sleep need, consistently in all mouse strains analyzed. Transgenic mice expressing a FLAG-tagged poly(A)-binding protein (PABP) under the control of Homer1a promoter were generated. Because PABP binds the poly(A) tails of mRNA, affinity purification of FLAG-tagged PABP proteins from whole brain lysates, is expected to co-precipitate all mRNAs from neurons expressing Homer1a. Three other activity-induced genes (Ptgs2, Jph3, and Nptx2) were identified by this technique to be over-expressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View Samples