Two critical events that are required for normal transition from fetal to extrauterine life are development of the alveoli that allow for efficient gas exchange in the lung and relaxation of the pulmonary vascular smooth muscle. Patients with congenital diaphragmatic hernia (CDH) have abnormal lung and pulmonary vascular development that results in a lethal combination of lung hypoplasia and pulmonary hypertension. To better understand the mechanisms responsible for abnormal lung and pulmonary vascular development and function we generated Pbx1/2 conditional knockout mice that lack Pbx1 and Pbx2 expression in the lung mesenchyme. Pbx1 has previously been shown to be required for normal diaphragm development, however its role in alveologenesis, and the mechanisms responsible for pulmonary hypertension, has not been studied. We found that Pbx1/2 CKO mice have failure of alveologenesis and die of severe pulmonary hypertension by 2 to 3 weeks of age. In order to better understand the downstream genetic mis-regulation caused by deletion of Pbx1/2, and identify their potential transcriptional targets, we carried out transcriptional profiling of Pbx1/2 CKO and control mice starting at postnatal day 3 (P3), when a histological phenotype first becomes apparent, and then working back to the time of birth (P0), and embryonic day 14 (E14) when the pulmonary vascular smooth muscle is developing.
PBX transcription factors drive pulmonary vascular adaptation to birth.
Specimen part
View SamplesThis series contain time course microarray data from MCF10A-Myc cells treated with either ethanol or Dexamethasone for 30 min, 2 hr, 4 hr, and 24 hr. This series contains three biological replicates that were analyzed as independent replicate experiments (data were normalized within each replicate experiment, not across all samples).
Glucocorticoid receptor activation signals through forkhead transcription factor 3a in breast cancer cells.
Age
View SamplesThe role of sphingolipids (SLs) in the immune system has come under increasing scrutiny recently due to the emerging contributions that these important membrane components play in regulating a variety of immunological processes. The acyl chain length of SLs appears particularly critical in determining SL function. Here we show a role for very-long acyl chain SLs (VLC-SLs) in invariant natural killer T (iNKT) cell maturation in the thymus and homeostasis in the liver. Ceramide synthase 2 (CerS2) null mice, which lack VLC-SLs, were susceptible to a hepatotropic strain of lymphocytic choriomeningitis virus, which is due to a reduction in the number of iNKT cells. Bone marrow chimera experiments indicated that hematopoietic-derived VLC-SLs are essential for maturation of iNKT cells in the thymus, whereas parenchymal-derived VLC-SLs are crucial for iNKT cell survival and maintenance in the liver. Our findings suggest a critical role for VLC-SL in iNKT cell physiology. Overall design: Liver mRNA profiles of 3-4 month old wild type (WT), WT iNKT cell transfered and CerS2-/-mice, infected or not with LCMV were generated by deep sequencing. Several replicateswere included and pocessed using the MARS-seq protocol (Jaitin et al. 2014 Science.343:776-9) and sequencing in the Illumina NextSeq 500 instrument
Critical Role for Very-Long Chain Sphingolipids in Invariant Natural Killer T Cell Development and Homeostasis.
Specimen part, Cell line, Treatment, Subject
View Samples