This SuperSeries is composed of the SubSeries listed below.
Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.
Cell line, Treatment
View SamplesPhotodynamic therapy (PDT) is a tumor treatment strategy that relies on the production of reactive oxygen species (ROS) in the tumor following local illumination. Although PDT has shown promising results in the treatment of non-resectable perihilar cholangiocarcinoma, it is still employed palliatively. In this study, tumor-comprising cells (i.e., cancer cells, endothelial cells, macrophages) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). Post-PDT survival pathways were studied following sublethal (50% lethal concentration (LC50)) and supralethal (LC90) PDT using a multi-omics approach. ZPCLs did not exhibit toxicity in any of the cells as assessed by toxicogenomics. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly hypoxia-inducible factor 1 (HIF-1)-, nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-B)-, activator protein 1 (AP-1)-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. (Phospho)proteomic and metabolomic analysis showed that PDT-subjected SK-ChA-1 cells downregulated proteins associated with epidermal growth factor receptor (EGFR) signaling, particularly at LC50. PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor parenchymal and non-parenchymal cells that, in tumor cells, transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, sublethally afflicted tumor cells are a major therapeutic culprit. Our multi-omics analysis unveiled multiple druggable targets for pharmacological intervention.
Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.
Cell line, Treatment
View Samples10 saliva samples from patients with primary Sojgren's syndrome and 10 saliva samples from control subjects
Salivary proteomic and genomic biomarkers for primary Sjögren's syndrome.
Sex
View SamplesH69M cells derive from H69 small cell lung cancer cells subjected to prolonged treatment with HGF. Among the whole population of cells, a subset of more fibroblastic cells was isolated (H69M-mesenchymal). In this experiment we compared expression profiles of both cell lines
Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer.
Specimen part, Cell line
View SamplesAlthough skeletal muscle cells can be generated from human iPSCs, transgene-free protocols include only limited options for their purification and expansion. In this study we found that FACS-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 x 1011 fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of the acid alpha glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies. Overall design: Myogenic progenitors were expanded for ~15 days and harvested either in proliferation conditions or after 4 days of differentiation as described previously (van der Wal et al., 2017b). RNA was extracted using the RNeasy minikit with DNAse treatment (Qiagen, Germantown, MD). Sequencing libraries were prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, California, USA) according to the manufacturer's instructions. Libraries were sequenced on a HiSeq2500 sequencer (Illumina, San Diego, California, USA) in rapid-run mode according to the manufacturer's instructions. Reads 50 base-pairs in length were generated. The RNA-sequencing datasets listed in table S3 were downloaded and aligned with the datasets generated in this study using the 'new Tuxedo' pipeline (Pertea et al., 2016). The processed data file includes the analysis of 30 additonal Samples from other research groups, partly from GEO and partly from other sources such as ENCODE and ENA. The header table linked below lists the origin of the other Samples.
Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies.
Specimen part, Disease, Disease stage, Subject
View Samples