refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 59 results
Sort by

Filters

Technology

Platform

accession-icon GSE87289
Gene expression data from WM983B melanoma cells treated with vehicle or 2.5 M inhibitor (corin2 or MS-275) for 24 h
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Epigenetic regulation of gene expression by histone modification has emerged as a major facet of physiologic and disease processes. As a result, there has been intense interest in developing epigenetic therapies leading to the discovery of small molecule agents that target proteins involved in histone modification. Several histone deacetylase (HDAC) inhibitors are now approved drugs for a specialized group of hematologic malignancies but not yet for a wider range of cancer types including solid tumors. One of the conceptual challenges in targeting HDACs is that even selective class I HDAC inhibitors likely impact these deacetylase activities indiscriminately across a range of distinct HDAC-containing multiprotein complexes. Such broad cellular effects may result in a narrow therapeutic window between disease efficacy and toxicity. Among HDAC complexes, the CoREST complex, which includes HDAC1 or its close paralog HDAC2, the scaffolding protein CoREST, and lysine specific demethylase 1 (LSD1) has attracted special interest. Here we report corin2, designed to dually inhibit the CoREST complex major enzymatic activities, lysine specific demethylase 1 (LSD1) and HDACs 1/2. Corin2 is a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin2 selectively targets the CoREST complex and shows more sustained inhibition of the CoREST complex HDAC activity than entinostat. Cell-based experiments demonstrate that corin2 exhibits a superior anti-proliferative profile against several melanoma lines compared to its parent monofunctional HDAC and LSD1 inhibitors (alone or in combination) but is less toxic to non-cancerous primary human melanocytes. Transcriptomics analysis shows that corin2 is a more powerful inducer of tumor suppressor genes relative to the parent HDAC and LSD1 compounds (alone or in combination). Genetic knockdown of CoREST or LSD1 in cancer cell lines abolishes the differences in potency of corin2 vs. entinostat, suggesting that corin2's favorable pharmacologic effects rely on an intact CoREST complex. Corin2 was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that selectively target particular epigenetic regulatory complexes and offer unique therapeutic opportunities.

Publication Title

Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP101581
Transcriptome of choroid endothelial cells from P5 and P30 mice.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch’s membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Methods: ECs from P5 and P30 mice were labeled in vivo by retro-orbital injection of fluorescently-labeled anti-VE-Cadherin. After 10 minutes, mice were euthanized, eyeballs were enucleated and the anterior segment was discarded. After removal of the neural retina, RPE/choroid was mechanically dissected from the sclera and digested. ECs were isolated by flow cytometry and processed immediately for RNA extraction. Results: Transcriptome analyses show that whereas P5 choroid EC transcriptome is preferentially enriched in cell cycle- and chromosome-related transcripts, reflecting an immature phenotype, the transcriptome of adult (P30) choroid ECs is enriched in genes encoding proteins involved in ‘biological adhesion’, including a variety of extracellular matrix (ECM)-related genes. Conclusion: these results strongly suggest that mature choroid ECs actively participate in extracellular matrix assembly and regulation. Overall design: Transcriptome of choroid ECs isolated from P5 and P30 mice (3 independent isolations, 7 animals per isolation) was determined using the Illumina HiSeq2000 platform. Upon quality control using FastQC, raw reads were aligned to the mouse genome (mm9) using TopHat with default parameters. CuffLinks with GC and upper quartile normalization was then used to calculate normalized expression levels.

Publication Title

Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE22139
Bone morphogenetic protein-7 is a MYC target with pro-survival functions in childhood medulloblastoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Medulloblastoma (MB) is the most common malignant brain tumor in children, among whom overexpression or amplification of MYC oncogenes has been associated with poor clinical outcome. Although the MYC functions during normal development and oncogenesis in various systems have been extensively investigated, the transcriptional targets mediating MYC effects in MB are still elusive. Their identification and roles during MB onset and progression are important and will ultimately suggest novel potential therapeutic targets. cDNA microarray analysis was used to compare the effects of overexpressing and silencing MYC on the transcriptome of a MB-derived cell line. We identified 209 genes with potential relevance to MYC-dependent cellular responses in MB. Among the MYC-responsive genes, we found members of the bone morphogenetic protein (BMP) signaling pathway, which plays a crucial role during the development of the cerebellum. In particular, the cytokine gene BMP7 was identified as a direct target of MYC in MB cells. Similar to the effect induced by BMP7 silencing by siRNA, the use of a small-molecule inhibitor of the BMP/SMAD signaling pathway reduced cell viability in a panel of MB cells. Altogether, our findings indicate that high MYC levels drive BMP7 expression in MB to induce pro-survival and pro-proliferative cellular pathways. This observation suggests that targeting the BMP/SMAD pathway may be a new therapeutic concept for the treatment of childhood MB.

Publication Title

Bone morphogenetic protein-7 is a MYC target with prosurvival functions in childhood medulloblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE1919
Rheumatoid arthritis
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced inter-patient heterogeneity. To characterize RA at the molecular level and to uncover key pathomechanisms, we performed whole-genome gene expression analyses. Synovial tissues from rheumatoid arthritis patients were compared to those from osteoarthritis patients and to normal donors.

Publication Title

Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP091573
Networks of cultured iPSC-derived neurons reveal the human synaptic activity-regulated adaptive gene program
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

We studied the synaptic activity-regulated gene expression response in the human genetic background using cultured human iPSC-derived (hiPSCd) neuronal networks and networks of hiPSCd neurons mixed with mouse primary neurons. Our results confirm that genetic changes affect the synaptic activity-regulated gene program, proposing a functional mechanism how they have driven evolution of human cognitive abilities. Overall design: We compared RNA profiles of untreated hiPSCd neurons and hiPSCd neurons treated with bicuculline and 4-aminopyridine for 1 or 4 hours. Samples were collected from hiPSCd neuron-only cultures and from co-cultures of hiPSCd neurons and mouse primary hippocampal neurons.

Publication Title

Networks of Cultured iPSC-Derived Neurons Reveal the Human Synaptic Activity-Regulated Adaptive Gene Program.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP179648
Phytochrome-based extracellular matrix with reversibly tunable mechanical properties
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 3000, NextSeq 500

Description

Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a polyethylene glycol matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechano-signaling pathways respond to changing mechanical environments, and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows addressing fundamental questions of how cells react to dynamic mechanical environments. Further, remote control of such matrices could create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots. Overall design: Analysis of global gene expression changes due to differences in the mechanical properties of the phytochrome-based hydrogels

Publication Title

Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE34114
Temporal response of mouse peritoneal cells to a non-pathogenic E. coli infection
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of early and late changes in the mouse peritoneal cells in response to E. coli induced sepis. Result provide an insight into the molecular function and pathways expressed at these different time points.

Publication Title

Transcriptomic analysis of peritoneal cells in a mouse model of sepsis: confirmatory and novel results in early and late sepsis.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE34897
Gene expression from Inducible TOC1 expression in Arabidopsis seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between TOC1 and CCA1/LHY. CCA1 and LHY are MYB transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data supports that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the Pseudoreceiver (PR) domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify new potential TOC1 targets and output pathways. Together these results define the biochemical action of the core clock protein TOC1 and refine our perspective on how plant clocks function.

Publication Title

Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE108033
Maternal gene expression data from dMLL3/4-depleted Drosophila embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.1 ST Array (drogene11st)

Description

Analysis of Drosophila melanogaster early embryos (pre-zygotic genome activation) following the germ line-specific depletion of the dMLL3/4 histone methyltransferase (also known as Trr). These results provide insight into the molecular mechanisms responsible for the assembly of the zygotic genome at fertilization.

Publication Title

The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43673
Expression data from D. melanogaster pupal wings
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The goal of this gene expression profiling experiment was to identify the entire set of transcription factors expressed during late pupal wing development (~80h APF) when pigmentation genes are expressed

Publication Title

Emergence and diversification of fly pigmentation through evolution of a gene regulatory module.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact