The objective of this study is to: 1) Characterize the innate immune responsiveness of patients with inborn errors in Toll-IL1 receptor signaling pathway (IRAK4, MyD88 deficiencies) compared to healthy subjects, through the analysis of blood leukocytes' transcriptional profiles after stimulation with ligands for the whole set of Toll-like receptors and IL-1Rs plus whole bacteria. 2) Understand the redundancies in TLR pathway in humans. 3) Explore the use of blood profiling approaches to assess the immune status of an individual by using Primary Immune Deficiencies as a proof of principle.
A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4.
Sex, Race
View SamplesMost autoreactive B cells are normally counterselected during early B cell development. To determine whether Toll-like receptors (TLRs) regulate the removal of autoreactive B lymphocytes, we tested the reactivity of recombinant antibodies from single B cells isolated from patients deficient for IL-1R-associated kinase (IRAK)-4, myeloid differentiation factor 88 (MyD88) and UNC-93B. Indeed, all TLRs except TLR3 require IRAK-4 and MyD88 to signal and UNC-93B-deficient cells are unresponsive to TLR3, TLR7, TLR8 and TLR9. All patients suffered from defective central and peripheral B cell tolerance checkpoints resulting in the accumulation of large numbers of autoreactive mature nave B cells in their blood. Hence, TLR7, TLR8, and TLR9 may prevent the recruitment of developing autoreactive B cells in healthy donors. Paradoxically, IRAK-4-, MyD88- and UNC-93B-deficient patients did not display autoreactive antibodies in their serum nor developed autoimmune diseases, suggesting that IRAK-4, MyD88 and UNC-93B pathway blockade may thwart autoimmunity in humans.
IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans.
No sample metadata fields
View SamplesWe describe here a male infant with a 100 kb de novo Xq28 deletion encompassing parts of the TMEM187 and MECP2 protein-coding genes and the IRAK1 protein-coding gene, as well as the MIR3202-1, MIR3202-2, and MIR718 RNA-coding genes. We analyzed the impact of human IRAK-1 deficiency on a genome-wide gene expression in human fibroblasts in response to TLR2/6, TLR4 agonists as well as to IL-1 and TNF-, using primary fibroblasts from healthy controls and IRAK-4-, MyD88- and MECP2-deficient patients for comparison.
Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.
No sample metadata fields
View SamplesInnate lymphoid cells (ILC) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCP). Still, how ILCP relate to mature tissue-resident ILCs remains unclear. We observed that a population of CD117+ ILC from peripheral blood (PB) of healthy donors does not represent any conical ILC subset, but expressed marker (CD117) commonly expressed by hemato-lymphoid progenitors. We therefore hypothesized PB CD117+ ILC might include uncommitted lymphoid precursors. In order to further understand the identity of PB CD117+ ILC, we profiled the transcriptome of highly purified circulating CD117+ ILC compared to CD34+ HSC, the latter representing immature hematopoietic progenitors with multi-lineage potential. Clear differences in gene expression profiles emerged, with a large cluster of 1540 genes expressed at substantially higher levels in CD117+ ILC. In contrast, CD34+ HSC cells highly expressed genes involved in the broad development of diverse hematopoietic lineages. Compared to HSC, CD117+ ILC express high levels of TF that have been shown to be essential for murine ILC development and we did not detect transcripts characteristic of T and B cells development. Transcriptomic analysis suggested that CD117+ ILC represent lymphoid-biased progenitors carrying a TF expression profile resembling a multi-potent ILC precursor (ILCP). Overall design: CD117+ ILC and CD34+ HSC were freshly isolated by FACS of peripheral blood of two healthy adult individuals. In total, 4 samples were analyzed and comparing between two cell populations.
Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation.
Specimen part, Disease, Disease stage, Treatment, Subject
View SamplesWe are studying signaling pathways and growth properties of cultured human ovarian cancer cells that are expressing the G protein-coupled receptor, luteinizing hormone receptor (LHR),particularly interested in the changes that occur when the receptor is activated by its cognate ligand, gonadotropin (LH). To investigate these questions, we have employed the SKOV3 ovarian cancer cell line that has been stably transfected with LHR, and can then test the response of these cells in culture following exposure to LH.
Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation.
Cell line, Treatment, Time
View SamplesThe glycopeptide antibiotic vancomycin (VCM) represents one of the last lines of defense against methicillin-resistant Staphylococcus aureus infections. However, vancomycin is nephrotoxic, but the mechanism of toxicity is still unclear.
Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesHOIL-1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the effect of TNF- and IL-1 on transcriptional changes of primary fibroblasts from HOIL-1-, MYD88- and NEMO-deficient patients.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Disease, Disease stage, Subject, Time
View SamplesHOIL1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the transcriptional profiles of whole blood from one HOIL dificient patient and other auto-inflammatory patients, including CINCA, Muckle-Wells syndrome and MVK deficiency.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Specimen part
View SamplesHOIL-1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the effect of TNF- and IL-1 on transcriptional changes of PBMCs from HOIL-1- and MYD88-deficient patients.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Specimen part, Disease, Disease stage, Subject, Time
View Samples