refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 39 results
Sort by

Filters

Technology

Platform

accession-icon GSE7473
HNF1-alpha inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP1 & ChREBP activation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Biallelic inactivating mutations of the transcription factor 1 gene (TCF1), encoding hepatocyte nuclear factor 1a (HNF1a), were identified in 50% of hepatocellular adenomas (HCA) phenotypically characterized by a striking steatosis. To understand the molecular basis of this aberrant lipid storage, we performed a microarray transcriptome analysis validated by quantitative RT-PCR, western-blotting and lipid profiling. In mutated HCA, we showed a repression of gluconeogenesis coordinated with an activation of glycolysis, citrate shuttle and fatty acid synthesis predicting elevated rates of lipogenesis. Moreover, the strong dowregulation of L-FABP suggests that impaired fatty acid trafficking may also contribute to the fatty phenotype. In addition, transcriptional profile analysis of the observed deregulated genes in non-HNF1a-mutated HCA as well as in non-tumor livers allowed us to define a specific signature of the HNF1a-mutated HCA. In theses tumors, lipid composition was dramatically modified according to the transcriptional deregulations identified in the fatty acid synthetic pathway. Surprisingly, lipogenesis activation did not operate through SREBP-1 and ChREBP that were repressed. We conclude that steatosis in HNF1a-mutated HCA results mainly from an aberrant promotion of lipogenesis that is linked to HNF1a inactivation and that is independent of both SREBP-1 and ChREBP activation. Finally, our findings have potential clinical implications since lipogenesis can be efficiently inhibited by targeted therapies.

Publication Title

HNF1alpha inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP-1 and carbohydrate-response element-binding protein (ChREBP) activation.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE9536
The -Catenin Pathway is Overexpressed in Focal Nodular Hyperplasia but not in Cirrhotic FNH-like Nodules
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Focal nodular hyperplasias (FNHs) are benign liver lesions considered to be a hyperplastic response to increased blood flow in otherwise normal liver. In contrast, FNH-like nodules occur in cirrhotic liver but share similar histopathological features. To better understand the pathophysiology of FNH, we performed a transcriptomic analysis. Methods: Affymetrix and cDNA microarrays were used to compare gene expression in eight FNHs with that in tissue from six normal livers. Selected genes were validated with quantitative RT-PCR in 70 benign liver tumors including adenomas and cirrhotic and FNH-like lesions. Results: Among the deregulated genes in FNHs, 19 were physiologically zonated in the normal liver lobule. All six periveinous genes were up-regulated in FNH, whereas 13 genes normally expressed in the periportal area were down-regulated. Immunohistochemistry revealed that glutamine synthetase was markedly overexpressed, forming anastomosed areas usually centered on visible veins. -catenin mRNA was slightly but significantly overexpressed, as were several known -catenin target genes. Moreover, activated hypophosphorylated -catenin protein accumulated in FNH in the absence of activating mutations. These results suggest zonated activation of the -catenin pathway specifically in FNH, whereas the other benign hepatocellular tumors, including FNH-like lesions, demonstrated an entirely different pattern of -catenin expression. Conclusions: In FNH, increased expression of the -catenin pathway was restricted to enlarged periveinous areas, which may explain the slight polyclonal over-proliferation of hepatocytes at the origin of the lesion. FNH-like nodules may have a different pathogenetic origin.

Publication Title

The beta-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE11819
Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Inflammatory hepatocellular adenomas (IHCA) are benign liver tumours defined by the presence of inflammatory infiltrates and by the elevated expression of inflammatory proteins in tumour hepatocytes1,2. Here we show a striking activation of the IL6 signalling pathway in this tumour type, and sequencing candidate genes pinpointed this response to somatic gain-of-function mutations in the IL6ST gene that encodes the signalling co-receptor gp130. Indeed, ~70% of IHCA harbour small in-frame deletions that target the binding site of gp130 for IL6, and expression of the most frequent gp130 mutant, Delta-STVY190, in hepatocellular cells activates STAT3 in absence of ligand. Further, analysis of hepatocellular carcinomas revealed rare gp130 alterations always accompanied by -catenin-activating mutations, suggesting a cooperative effect of these signalling pathways in the malignant conversion of hepatocytes. The recurrent gain-of-function gp130 mutations in these human hepatocellular adenomas explains their inflammatory phenotype, and suggest that similar alterations may occur in other inflammatory epithelial tumours with STAT3 activation.

Publication Title

Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE62232
Large-scale gene expression profiling of 81 hepatocellular carcinomas
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) is ranked second in cancer-associated deaths worldwide. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause of hepatic cirrhosis). It is a complex and heterogeneous tumor due to activation of multiple cellular pathways and molecular alterations.

Publication Title

Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE13475
STOX1 overexpression in choriocarcinoma cells mimicks transcriptional alterations observed in preeclamptic placentas
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background

Publication Title

STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49132
GATA4
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Function of GATA factors in the adult mouse liver.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51478
Transcriptome profiling of GATA4,6 double depleted hepatocytes
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of changes in gene expression following hepatocyte specific deletion of GATA4 and GATA6 in adult mice. Results showed that the subset of differentially expressed genes had liver specific ontologies.

Publication Title

Function of GATA factors in the adult mouse liver.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49130
Transcriptome profiling of GATA4 depleted hepatocytes
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of changes in gene expression following hepatocyte specific deletion of GATA4 in adult mice. Results showed that the subset of differentially expressed genes had liver specific ontologies.

Publication Title

Function of GATA factors in the adult mouse liver.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE134359
Long noncoding RNA landscape in breast cancer [Mexico]
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Breast cancer (BC) is the most commonly diagnosed neoplasm in women worldwide and a well-recognized heterogeneous pathology classified into four molecular subtypes: Luminal A, Luminal B, HER2-enriched and Basal-like, each one with different biological and clinical characteristics. It is well recognize that clinical and molecular heterogeneity of BC is driven in part by mRNA and lncRNAs. We profiled mRNAs and lncRNA in 75 adjuvant tumors using an Affymetrix microarray platform.

Publication Title

A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE134254
A long noncoding RNA landscape in breast cancer reveals a potential role for lncRNA AC009283.1 in proliferation and apoptosis in HER2-enriched molecular subtype
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We silenced lncRNA AC009283.1 using shRNAs in cell line SKBR3, carried a ~75% silencing compared to thenegative control (NC).

Publication Title

A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact