The concept of immune regulation/suppression has been well-established. With thymus-derived CD4 CD25 regulatory T (TR) cells, it became clear that a variety of additional peripherally induced TR cells play vital roles in protection from many harmful immune responses including intestinal inflammation. In the present study, we have analyzed in vivo-induced Ag-specific CD4 TR cells with respect to their molecular and functional phenotype. By comparative genomics we could show that these Ag-specific TR cells induced by chronic Ag stimulation in vivo clearly differ in their genetic program from naturally occurring thymus-derived CD4 CD25 TR cells. This distinct population of induced TR cells express neither CD25 nor the TR-associated transcription factor Foxp3. Strikingly, CD25 is not even up-regulated upon stimulation. Despite the lack in Foxp3 expression, these in vivo-induced CD25 TR cells are able to interfere with an Ag-specific CD8 T cell-mediated intestinal inflammation without significant increase in CD25 and Foxp3 expression. Thus, our results demonstrate that in vivo-induced Ag-specific TR cells represent a distinct population of Foxp3 CD25 TR cells with regulatory capacity both in vitro and in vivo.
Chronic antigen stimulation in vivo induces a distinct population of antigen-specific Foxp3 CD25 regulatory T cells.
Specimen part
View SamplesOne of the most common genetic alterations in acute myeloid leukemia is the internal tandem duplication (ITD) in the FLT3 receptor for cytokine FLT3 ligand (FLT3L). The constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on normal hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. We report that young pre-leukemic mice with the Flt3ITD knock-in allele manifest an expansion of all DCs including classical (cDCs) and plasmacytoid (pDCs). The expansion originated in DC progenitors, occurred in a cell-intrinsic manner and was further enhanced in Flt3ITD/ITD mice. The mutation caused the downregulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T cells (Tregs). Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity in the absence of Tregs. Thus, the FLT3-ITD mutation directly affects DC development, thereby indirectly modulating T cell homeostasis and supporting Treg expansion. This effect of FLT3-ITD may subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. Overall design: Sorted splenic dendritic cell subsets from either Flt3+/+ or Flt3ITD/+ mice were sequenced for mRNA profiling. For each subset per genotype contains 2-3 replicates, all from independent experiments.
Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesWe surveyed DNA methylation profiles of all human RefSeq promoters in relation to gene expression and differentiation in adipose tissue, bone marrow and muscle mesenchymal progenitors, as well as in bone marrow-derived hematopoietic progenitors. We unravel strongly overlapping DNA methylation profiles between adipose stem cells (ASCs), bone marrow mesenchymal stem cells (BMMSCs) and muscle progenitor cells (MPCs), while hematopoietic progenitor cells (HPCs) are more epigenetically distant from MSCs seen as a whole. Differentiation resolves a fraction of methylation patterns common to MSCs, generating epigenetic divergence.
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Specimen part
View SamplesThe object of this study was to investigate the effect of elevated glucose concentrations (15 and 25 mM glucose) on gene expression in undifferentiated and adipogenic differentiated ASCs.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesThe aim of this study was to characterize basal gene expression for proliferating adipose tissue MSCs, cultured at normal cell culture conditions.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View SamplesAll living cells rely on the communication with other cells to ensure their function and survival. Molecular signals are sent among cells of the same cell type and from cells of one cell type to another. In cancer, not only the cancer cells themselves are responsible for the malignancy, but also stromal (non-cancerous) cells and the molecular signals they send to cancer cells are important factors that determine the severity and outcome of the disease. Therefore, the identification of stromal signals and their influence on cancer cells is important when looking for novel treatment strategies.
Causal Modeling of Cancer-Stromal Communication Identifies PAPPA as a Novel Stroma-Secreted Factor Activating NFκB Signaling in Hepatocellular Carcinoma.
Specimen part
View SamplesCancer-related fatigue is one of the most frequent complaints among breast cancer survivors, with a major negative impact on general life. However, the etiology behind this syndrome is still unraveled. Gene expression analysis was performed on whole blood samples from breast cancer survivors classified as either fatigued or non-fatigued at two consecutive time points. The analysis identified several gene sets concerning plasma and B cell pathways as different between the fatigue and non-fatigue groups, suggesting that a deregulation in these pathways might underlie the fatigue syndrome. The fatigue group also showed a higher mean level of leucocytes, lymphocytes and neutrophiles compared with the non-fatigue group, thus further implicating the immune system in the biology behind the fatigue syndrome.
Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors.
Specimen part, Subject
View Samples