refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 513 results
Sort by

Filters

Technology

Platform

accession-icon GSE30536
Expression data from IFN alpha 2-treated macrophages infected with HIV
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Temporal changes of the expression levels of the complete human transcriptome during the first 24 hours following infection of IFN-pre-treated macrophages. This approach has allowed us to identify genes involved in the IFN signaling that have an impact on HIV-1 infection of macrophages

Publication Title

TRAF6 and IRF7 control HIV replication in macrophages.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP095533
Transcriptomic, Proteomic, and Metabolomic Landscape of Positional Memory in the Caudal Fin of Zebrafish
  • organism-icon Danio rerio
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including developmental and bioelectric signaling as well as amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration. Overall design: RNA-seq was performed on 5 biological replicates for each of 3 positions along the proximodistal axis of the caudal fin; proximal, middle and distal (15 total samples). Each biological replicate was a pool of fin regions cut from 2 male and 2 female zebrafish.

Publication Title

Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP173650
Metabolism as an early predictor of DPSCs aging
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Pluripotent stem cells can switch their unique metabolic requirements to facilitate cellular changes but it is not clear if adult stem cells utilize metabolism in a similar manner. Here we studied the metabolism of a human adult stem cell: dental pulp stem cells (DPSCs). The dental pulp from third molars of a diverse patient group was surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteogenic and adipogenic lineages. Through RNA seq analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-ß) pathway and the proteins associated with muscle contraction are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs. This metabolic signature can be used to predict the onset of replicative senescence phenotypes. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging. Overall design: We did RNA-seq of dental pulp stem cells (DPSC) using our own approach (ID# 29, 43, 44, 45), as well as commercial DPSC and mesenchymal stem cells (MCS) from Lonza.

Publication Title

Metabolism as an early predictor of DPSCs aging.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE33221
Conserved molecular interactions within MYST-ING acetyltransferase complexes that regulate cell proliferation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE33220
Effects of the JADE-HBO1 complex on gene expression
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

We find that 499 genes are up-regulated and 457 are down-regulated in response to over-expression of JADE1, while 397 genes are up-regulated and 385 are down-regulated after HBO1 knock-down.

Publication Title

Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP080939
RNA-seq of N2a cells treated with 100 nM Dexamethasone for 4 hours +/- siARGLU1
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

ARGLU1 was identified in a screen for new modulators of glucocorticoid signaling in the CNS. RNA-seq of neuronal cells ±siARGLU1 revealed significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Treatment with dexamethasone, a GR activator, also induced changes in the pattern of alternatively spliced genes, highlighting an underappreciated global mechanism of glucocorticoid action in neuronal cells. Thus, in addition to its basal role, ARGLU1 links glucocorticoid-mediated transcription and alternative splicing in neural cells, providing new avenues from which to investigate the molecular underpinnings of cognitive stress disorders. Overall design: N2a cells were transfected with non-targeting control and ARGLU1 siRNAs for 48 hrs followed by Vehicle (EtOH) or 100 nM Dexamethasone treatment for 4 hrs. RNA was extracted and pooled by treatment group (n=3/group) and mRNA enriched Illumina TruSeq V2 RNA libraries were prepared. Samples were sequenced on Illumina HiSeq2500.

Publication Title

ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP115520
First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The polycomb repressive complex 2 (PRC2) histone methyl-transferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with sub-nanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESC) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development. Overall design: 1 biological sample were isolated from naïve hESC cell line Elf1 and Elf1 expressing EED binder 22.2. RNA-seq and ChIP-seq (H3K27me3) was performed for each sample.

Publication Title

First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19467
Characterization of Populus Class III HDZIPs
  • organism-icon Populus tremula x populus alba
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

Comparison of wild type Populus to transgenics expressing either a miRNA-resistant Populus ortholog of ATHB15/CORONA or miRNA-resistant Populus ortholog of REVOLUTA

Publication Title

The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP155332
RNAseq data of two week-old soybean leaves response to cold stress
  • organism-icon Glycine max
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome analysis of cold-treated leaves (unifoliates) of soybean seedlings were performed. RNAseq analysis was performed using two lanes on a Illumina HiSeq2000 and sequenced on a 100bp, paired-end run. Overall design: Two-weeks old soybean (c.v. 'Williams 82') seedlings were cold-treated (4 °C) starting at 4 h after the lights turned on (Zeitgeber Time, ZT4 h, 18 hours light/6 hours dark) and maintaining 4 °C continuously with the light cycle till harvest time (0, 1, and 24 hours). All treatment samples were performed in triplicate (with n=6 plants per replication).

Publication Title

The Ethylene Signaling Pathway Negatively Impacts CBF/DREB-Regulated Cold Response in Soybean (<i>Glycine max</i>).

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE44623
Transcriptional responses of the zebrafish (Danio rerio) brain to acute sodium selenite supplementation.
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The possible benefits of selenium (Se) supplementation are currently under investigation for prevention of certain cancers and treatment of neurological disorders. Little is known concerning the response of the brain to increased dietary Se under conditions of Se sufficiency, despite the majority of Se supplementation trials occurring in healthy subjects considered Se sufficient. We evaluated the transcriptional response of the zebrafish (Danio rerio) brain to supplementation with nutritionally relevant levels of dietary Se (sodium selenite) during conditions of assumed Se sufficiency.

Publication Title

Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact