refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 876 results
Sort by

Filters

Technology

Platform

accession-icon GSE33585
Expression data from monocytic cell lines (THP)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The experiment aims to identify transcriptional effects of Infliximab (an anti-TNF antibody) and CDP870 on human cell lines

Publication Title

mTNF reverse signalling induced by TNFα antagonists involves a GDF-1 dependent pathway: implications for Crohn's disease.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE29241
Dendritic cell lineage commitment is instructed by distinct cytokine signals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dendritic cells (DC) develop from hematopoietic stem cells, which is guided by instructive signals through cytokines. DC development progresses from multipotent progenitors (MPP) via common DC progenitors (CDP) into DC. Flt3 ligand (Flt3L) signaling via the Flt3/Stat3 pathway is of pivotal importance for DC development under steady state conditions. Additional factors produced during steady state or inflammation, such as TGF-beta1 or GM-CSF, also influence the differentiation potential of MPP and CDP. Here, we studied how gp130, GM-CSF and TGF-beta1 signaling influence DC lineage commitment from MPP to CDP and further into DC. We observed that activation of gp130 signaling promotes expansion of MPP. Additionally, gp130 signaling inhibited Flt3L-driven DC differentiation, but had little effect on GM-CSF-driven DC development. The inflammatory cytokine GM-CSF induces differentiation of MPP into inflammatory DC and blocks steady state DC development. Global transcriptome analysis revealed a GM-CSF-driven gene expression repertoire that primes MPP for differentiation into inflammatory DC. Finally, TGF-beta1 induces expression of DC-lineage affiliated genes in MPP, including Flt3, Irf-4 and Irf-8. Under inflammatory conditions, however, the effect of TGF- beta1 is altered: Flt3 is not upregulated, indicating that an inflammatory environment inhibits steady state DC development. Altogether, our data indicate that distinct cytokine signals produced during steady state or inflammation have a different outcome on DC lineage commitment and differentiation.

Publication Title

Dendritic cell lineage commitment is instructed by distinct cytokine signals.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-MEXP-2
Transcription profiling time series of hematopoietic progenitor cells treated with TNFalpha as they differentiate to dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Dendritic Cell differentiation - Transcription Regulator cluster follow-up: The data files associated to this experiment show gene expression levels for a subset of 481 transcripts (out of 12626 genes represented on Affymetrix Genechip HG_U95Av2) corresponding to Transcription Regulators whose expression is changed during the differentiation process of Dendritic Cells as assessed in the 9 conditions tested. Another subset of genes, corresponding to a cluster of CD molecules is available from E-MEXP-1 experiment.

Publication Title

Transcriptional profiling identifies Id2 function in dendritic cell development.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE21691
Expression data from Adam17 knock out mice and wild type
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adam17, a shedding protease, is strongly upregtulated during inflammation and cancer. Here we investigate the genome wide effects of Adam17 knock out on the transcriptome.

Publication Title

Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80000
Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79999
Adam17-Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling (macrophage)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Gene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79998
Adam17-Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling (aorta)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Gene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP200316
Gene expression from mouse models of B cell lymphomagenesis driven by gp130 signaling
  • organism-icon Mus musculus
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This study examines the transcriptional changes invoked by activation of gp130 signaling in different mouse models of B cell lymphomagenesis. In order to study the in vivo effects of aberrant activity of IL-6/IL-6R/gp130-JAK/STAT3 signaling, we designed a transgene that allows conditional expression of L-gp130 by generating a ROSA26 knock-in mouse strain where compound L-gp130 and ZsGreen expression from the CAG promoter is prevented by a loxP- and a rox-flanked stop cassette. Total RNA extracted from purified B cells from young CD19Cre+/- ;L-gp130fl/+ and wildtype control mice was sequenced using unique molecular identifiers (UMI) in a paired end design where read1 corresponds to the cDNA and read2 contains the UMI. Furthermore, aging CD19Cre+/- ;L-gp130fl/+ animals developed tumors located predominantly in mesenteric lymph nodes. Infiltration of CD19;L-gp activated B cells was determined by Flow Cytometry and ZsGreen expression. Total RNA from tumors generally containing >60% ZsGreen+ cells was profiled as described above, for tumors with lower CD19;L-gp activated B cell content FACS was applied. In order to study the effects of activated IL-6/IL-6R/gp130-JAK/STAT3 signaling on Eµ-Myc-driven lymphomagenesis, CD19Cre;L-gp130fl;Eµ-Myc triple transgenic mice were generated and fetal liver hematopoietic stem/progenitor cell (FL-HSPC) grafts were transplanted into lethally irradiated syngeneic mice alongside FL-HSPC from CD19Cre;L-gp130f and Eµ-Myc control mice. Lastly, IL-6/IL-6R/gp130-JAK/STAT3 signaling was activated in the entire hematopoetic system using Vav1Cre resulting in Vav1Cre+/- ;L-gp130fl/+ animals. Independent of the time point of activation during hematopoietic and B cell differentiation, all Cre;L-gp compound mice succumbed to tumors of B cell origin. Overall design: Bulk gene expression data are presented for (i) purified B cells from wildtype control mice (n=6) and young CD19;L-gp mice (n=4), (ii) tumors detected in aging CD19;L-gp mice with a mature (n=11) and plasma cell phenotype (n=6), respectively, (iii) tumors arising in lethally irradiated syngeneic mice after transplantation of fetal liver hematopoietic stem/progenitor cells from CD19;L-gp;Myc (n=9), CD19;L-gp (n=7) and Eµ-Myc (n=9) mice, respectively, and (iv) malignant B cells from Vav1;L-gp mice (n=13).

Publication Title

Activated gp130 signaling selectively targets B cell differentiation to induce mature lymphoma and plasmacytoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP126245
ADAM17 is required for EGF-R induced intestinal tumors via IL-6 trans-signaling
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

Colorectal cancer is treated with antibodies blocking epidermal growth factor receptor (EGF-R) but therapeutic success is limited. EGF-R is stimulated by soluble ligands, which are derived from transmembrane precursors by ADAM17-mediated proteolytic cleavage. In mouse intestinal cancer models in the absence of ADAM17, tumorigenesis was almost completely inhibited and the few remaining tumors were of low grade dysplasia. RNA-Seq analysis demonstrated downregulation of STAT3 and Wnt pathway components. Since EGF-R on myeloid cells, but not on intestinal epithelial cells is required for intestinal cancer and IL-6 is induced via EGF-R stimulation, we analyzed the role of IL-6 signaling. Tumor formation was equally inhibited in IL-6 -/- and sgp130Fc transgenic mice, in which only trans-signaling via soluble IL-6R is abrogated. ADAM17 is needed for EGF-R-mediated induction of IL-6 synthesis, which via IL-6 trans-signaling induces ß-catenin dependent tumorigenesis. Our data reveal the possibility of a novel strategy for treatment of colorectal cancer, which could circumvent intrinsic and acquired resistance to EGF-R blockade. Overall design: RNA sequencing of tumor tissue and surrounding unaffected tissue of Apc Min/+ and Apc Min/+ ::ADAM17 ex/ex

Publication Title

ADAM17 is required for EGF-R-induced intestinal tumors via IL-6 trans-signaling.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP017330
DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Although liganded nuclear receptors have been established to regulate RNA polymerase II (Pol II)-dependent transcription units, their role in regulating Pol III-transcribed DNA repeats remains largely unknown. Here we report that ~2-3% of the ~100,000-200,000 total human DR2 Alu repeats located in proximity to activated Pol II transcription units are activated by the retinoic acid receptor (RAR) in human embryonic stem cells to generate Pol III-dependent RNAs. These transcripts are processed, initially in a DICER-dependent fashion, into small RNAs (~28-65 nt) referred to as repeat-induced RNAs that cause the degradation of a subset of crucial stem-cell mRNAs, including Nanog mRNA, which modulate exit from the proliferative stem-cell state. This regulation requires AGO3-dependent accumulation of processed DR2 Alu transcripts and the subsequent recruitment of AGO3-associated decapping complexes to the target mRNA. In this way, the RAR-dependent and Pol III-dependent DR2 Alu transcriptional events in stem cells functionally complement the Pol II-dependent neuronal transcriptional program. Overall design: RNA-sequencing of polyA selected RNA molecules in NTera2/D1 cells and Global Run On (GRO) assay followed by high throughput sequencing (GRO-seq).

Publication Title

DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact