refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 260 results
Sort by

Filters

Technology

Platform

accession-icon SRP106855
Chronophin regulates metabolic and transcriptomic features of glioblastoma stem-like cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

High throughput sequencing of poly-A RNA Overall design: Two-condition experiment: Control- and Chronophin shRNA (CIN/PDXP) in glioblastoma stem-like cells

Publication Title

Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions.

Sample Metadata Fields

Disease, Cell line, Subject

View Samples
accession-icon GSE56021
in vitro differentiated Th0, Th17, and Tr1 cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression profiling of in vitro differentiated murine Th cell subsets. Flow cytometrically sorted naive Th cells (CD4+ CD44- Foxp3-) were polyclonally stimulated in vitro for 3 days using 4 g/ml plate-bound antibody to CD3 (145-2C11) and 2 g/ml soluble antibody to CD28 (PV-1).

Publication Title

IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP167706
Genome-wide analysis of astrocyte XBP1 activation and regulation of transcriptional programs in CNS cells during EAE.
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report XBP1 activation and regulation of pro-inflammatory signaling in astrocytes, microglia, and CNS-recruited pro-inflammatory monocytes during EAE. Overall design: Analysis of RNA expression in astrocytes, microglia, and monocytes sorted by flow cytometry. Mice transduced with astrocyte-targeting lentiviruses encoding non-targeting or Xbp1-targeting shRNAs.

Publication Title

Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation.

Sample Metadata Fields

Sex, Disease, Cell line, Subject

View Samples
accession-icon GSE22840
Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE22544
Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast: expression analysis
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Introduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes.

Publication Title

Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE55386
IL-5-mediated gene expression in LDBM cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of LDBM cells stimulated with IL-5

Publication Title

IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP007823
Dynamic Transformations of Genome-wide Epigenetic Marking and Transcriptional Control Establish T Cell Identity [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

T cell development comprises a stepwise process of commitment from a multipotent precursor. To define molecular mechanisms controlling this progression, we probed five stages spanning the commitment process using deep sequencing RNA-seq and ChIP-seq methods to track genome-wide shifts in transcription, cohorts of active transcription factor genes, histone modifications at diverse classes of cis-regulatory elements, and binding patterns of GATA-3 and PU.1, transcription factors with complementary roles in T-cell development. The results locate potential promoter-distal cis-elements in play and reveal both activation sites and diverse mechanisms of repression that silence genes used in alternative lineages. Histone marking is dynamic and reversible, and while permissive marks anticipate, repressive marks often lag behind changes in transcription. In vivo binding of PU.1 and GATA-3 relative to epigenetic marking reveals distinctive, factor-specific rules for recruitment of these crucial transcription factors to different subsets of their potential sites, dependent on dose and developmental context. Overall design: Genome-wide expression profiles, global distributions of three different histone modifications, and global occupancies of two transcription factors were examined in five developmentally related immature T populations. High throughput sequencing generated on average 9-30 million of mappable reads (single-read) for each ChIP-seq sample, and 10-15 million (single-read) for RNA-seq. Independent biological replicates were analyzed for individual populations. Terminology: FLDN1_RNA-seq_sample1 and FLDN1_RNA-seq_sample2 are independent biological replicates for the same cell type.

Publication Title

Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE75534
Human B-1 and pre-plamablast like cells Gene Expression Array
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Human B-1 cells (CD20+CD27+CD43+CD38lo/int) and pre-plasmablast like cells (CD20+CD27hiCD38hi) are new antibody secreting cells identified in circulation. We used microarray to compare and contrast expressed genes between these two cell population

Publication Title

Distinctions among Circulating Antibody-Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65627
Expression data from human melanoma specific CD8+ T cell clones
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The optimal T cell attributes for the adoptive immunotherapy of cancer and viral diseases are currently unclear. Recent adoptive transfer clinical trials using ex vivo expanded tumor infiltrating lymphocytes has provided evidence that differentiated effector T cells can mediate durable responses in selected cancer patients. The capacity of these transferred cells to persist in the host was found to strongly correlate with their clinical activity. Thus, there is significant interest in identifying intrinsic markers that define antigen specific effector T cells that can develop into long-lived memory cells rather than undergoing apoptosis after infusion in humans. We recently reported the long term persistence of ex vivo expanded tumor specific CD8+ T effector clones in refractory metastatic melanoma patients after adoptive T cell transfer. By utilizing these highly homogeneous clone populations, we sought to define the pre-infusion cellular and molecular attributes associated with their effector to memory transition. Comparative transcriptional profiling found the pre-infusion clone mRNA expression levels of the IL-7 receptor (IL-7Ra) and the proto-oncogene, c-myc, directly correlated with the level of clonal persistence after adoptive transfer in humans. The predictive value of these markers was further established by utilizing IL-7R protein, induced pSTAT5, and c-myc mRNA expression to prospectively identify human tumor specific effector clones that could engraft after controlled adoptive transfer into highly immunodeficient mice. These findings support that IL-7R and c-myc expression are valuable cell intrinsic markers that can predict the fate of effector CD8+ T cells after adoptive transfer.

Publication Title

Tumor-Specific Effector CD8+ T Cells That Can Establish Immunological Memory in Humans after Adoptive Transfer Are Marked by Expression of IL7 Receptor and c-myc.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33807
Eosinophil specific transcriptome in homeostatic intestine and lung
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Objective: To study the physiological role of eosinophils in the GI tract and lung under homeostatic conditions,

Publication Title

The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact