Studying dynamic transcripts in single cells (SC) requires large numbers of timed samples. We report an easy to use protocol to stabilize RNA in intact SCs without perturbing transcriptional patterns, and demonstrate its applicability for SC transcriptome assays with cells and tissue. We identify a gene-specific hierarchical pattern of all-or-none transcript induction elicited by different concentrations of pulsatile hormone stimuli in pituitary gonadotropes. Overall design: SC Mini Drop-seq experiments were performed on two samples from dissociated human cortical tissue: one is neocortex from a glioblastoma multiforme (GBM, tumor), the other is normal neocortex adjacent to the tumor.
Single-cell stabilization method identifies gonadotrope transcriptional dynamics and pituitary cell type heterogeneity.
Specimen part, Subject
View SamplesWe have used the slow cycling property, found in hair follicle stem cells, to look for LRCs in sweat glands as putative stem cells.
Label retaining cells (LRCs) with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.
Specimen part
View SamplesWe investigated the morphological roots decisions of Arabidopsis in a NO3- heterogeneous medium. To do so, we used the Split-Root System which is an experimental set up to assess root decisions in nutrient heterogeneous medium. Split-root plants have been subjected to three different treatments. Control KNO3 plants received KNO3 on both sides of the root system (C.NO3) and Control KCl plants received KCl on both sides (C.KCl) as a nitrogen deprivation treatment. 'Split' plants received KNO3 on one side (Sp.NO3) and KCl on the other side (Sp.KCl) of the root system to assess the root decision-making in a heterogeneous environment.
Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.
Specimen part, Treatment
View SamplesExpression in GFP vs. GFP/hTERT transduced CD8 T Lymphocytes from Healty Donors (HD) 1 and 2 at early and late passages. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD2 was profiled on U133Plus 2.0 and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD1 was profiled on U133A and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesHuman ES or iPS Cells were differentiated into endothelial cells (ECs) defined by expression of CD31 (PECAM1) and CD144 (VE-Cadherin) on the cell surface. All ES or iPS derived ECs were greater than 90% double positive for these two markers.
Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells.
Specimen part
View SamplesUbiquitylation plays an important role in the control of Na+ homeostasis by the kidney. It is well established that the epithelial Na+ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney, and is also a circadian output gene. In heterologous expression systems USP2-45 binds to ENaC, deubiquitylates it and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na+ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that the USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences to wild-type littermates with respect to the diurnal control of Na+ or K+ urinary excretion and plasma levels neither on standard diet, nor after acute and chronic changes to low and high Na+ diets, respectively. Moreover, they had similar aldosterone levels either at low or high Na+ diet. Blood pressure measurements using telemetry did not reveal variations as compared to control mice. Usp2-KO did neither display alternations in ENaC or Na+,Cl--cotransporter (NCC) expression, nor were there any changes in regulatory protein levels, as evidenced by immunoblotting and transcriptome analysis. We conclude that USP2-45 is not crucial for the regulation of Na+ balance or maintenance of blood pressure in vivo.
Mice carrying ubiquitin-specific protease 2 (Usp2) gene inactivation maintain normal sodium balance and blood pressure.
No sample metadata fields
View SamplesThis work studies the impact of AtNIGT1/HRS1-GR entrance in the nucleus upon DEX treatment in protoplasts.
AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip.
No sample metadata fields
View SamplesLiving organisms have to cope with multiple and combined fluctuations in their environment. According to their sessile mode of life, plants are even more subjected to such fluctuations impacting their physiology and development. In particular, nutrient availability is known to tune plant development through modulating hormonal signaling, and conversely, hormonal signals are key to control nutrient related signaling pathways (Krouk et al., 2011a). However, very few is known about molecular mechanisms leading to plant adaptation to such combined signals. Here we deployed an unprecedented combinatorial treatment matrix to reveal plant adaptation in response to nitrate (NO3-), ammonium (NH4+), auxin (IAA), cytokinins (CK) and abscisic acid (ABA) and their exhaustive binary combinations.
Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root.
Specimen part, Time
View Samples