refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 101 results
Sort by

Filters

Technology

Platform

accession-icon SRP093261
Embryonic VHL-HIF signaling defines dynamic heart metabolic compartments essential for cardiac maturation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1a regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1a and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1a hyperactivation, disrupting metabolic compartmentalization and blocking the midgestational shift toward oxidative phosphorylation. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for cardiac conduction system establishment. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. Overall design: RNA was isolated from individual E12.5 embryonic hearts after removal of the atria and valvular region. KOs and control littermates were matched by somite count, and a total number of 3 KOs and 3 controls from 3 independent litters were used. For RNA extraction, QIAzol Lysis Reagent (Qiagen; CA; USA) and the miRNeasy Mini Kit (Qiagen; CA; USA) were used. RNA was quantified and its purity checked with a NanoDrop ND-1000 spectophotometer (Thermo Scientific; MA; USA). RNA integrity was verified with an Agilent 2100 Bioanalyzer (Agilent Technologies; CA; USA). Index-tagged cDNA libraries were constructed from 500 ng of total RNA using the TruSeq RNA Sample Preparation v2 Kit (Illumina; CA; USA). Libraries were quantified by Quant-iTâ„¢ dsDNA HS assay in a Q-bit fluorometer (Life Technologies; CA; USA). Average library size and size distribution were determined by DNA 1000 assay in an Agilent 2100 Bioanalyzer. Libraries were normalized to 10nM using 10mM Tris-HCl, pH8.5 containing 0.1% Tween 20 and then applied to an Illumina flow cell for cluster generation (True Seq SR Cluster Kit V2 cBot) and sequencing-by-synthesis. Single reads of length 75bp were generated with the TruSeq SBS Kit v5 (Illumina; CA; USA) on the Genome Analyzer IIx platform, following the standard RNA sequencing protocol. Reads were further processed using the CASAVA package (Illumina; CA; USA) to split reads according to adapter indexes and produce fastq files.

Publication Title

Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE12488
Involvement of hCMV in the ontogeny of CD4+ T-LGL
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recent studies suggest the potential involvement of common antigenic stimuli on the ontogeny of monoclonal TCRalphabeta+/CD4+/NKa+/CD8-/+dim T-large granular lymphocyte (LGL) lymphocytosis. Since healthy individuals show (oligo)clonal expansions of hCMV-specific TCRVbeta+/CD4+/cytotoxic/memory T-cells, we investigate the potential involvement of hCMV in the origin and/or expansion of monoclonal CD4+ T-LGL. A detailed characterization of those genes that underwent changes in T-LGL cells responding to hCMV was performed by microarray gene expression profile (GEP) analysis.

Publication Title

Expanded cells in monoclonal TCR-alphabeta+/CD4+/NKa+/CD8-/+dim T-LGL lymphocytosis recognize hCMV antigens.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP052978
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and cardiac-specific Bmi1 deletion [human]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

To explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.

Publication Title

Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP051396
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and cardiac-specific Bmi1 deletion [mouse]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

To explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.

Publication Title

Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP131008
Promotion of myoblast differentiation by Fkbp5 via isomerization of Cdk4.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The molecular chaperons FK506-binding proteins (Fkbps) comprise one of three families of peptidyl prolyl isomerases, which promote the transition between cis- and trans-conformations of peptidyl prolyl bonds. Mouse Fkbp family is composed of at least 15 members, but the functions of the large family in cell proliferation and differentiation remain elusive. During myoblast differentiation, the cells need to exit the cell cycle before fusion and terminal differentiation to form myotubes. The clear distinction between proliferation and differentiation provides an ideal model with which to investigate the roles of Fkbps in these two cell biological events. We found that depletion of FkbpC in mouse myoblasts delayed the exit from the cell cycle and expression of myotube-specific genes, whereas its overexpression caused opposite effects. At a mechanistic level, our study revealed a crucial function of FkbpC in Cdk4 activation during myoblast proliferation. Cdk4 undergoes conformational changes in the HSP90/Cdc37/Cdk4 complex as a prerequisite for activation through binding to CyclinD1 accompanied by phosphorylation. Our results showed that FkbpC depletion released Cdk4 from the HSP90 complex, which increased the Cdk4/CyclinD1 complex in myoblasts and sustained high levels of phosphorylated Cdk4 and Rb during differentiation. These results explain the delayed cell cycle exit and differentiation in the depleted cells. In addition, after synchronizing the cell cycle of myoblasts we found dynamic changes of the amounts of FkbpC and Cdk4 in the HSP90 complex during the G1/S transition. Knockout mice of FkbpC demonstrated delayed muscle regeneration after chemical damage, providing an in vivo evidence for the essential role of FkbpC in muscle differentiation. Collectively, our study uncovered FkbpC's critical function as a novel switch regulating the transition from proliferation to differentiation through controlling one of the central regulators of proliferation, Cdk4. Overall design: mRNA profiles of Fkbp4 knockdown, Fkbp5 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.

Publication Title

Promotion of Myoblast Differentiation by Fkbp5 via Cdk4 Isomerization.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon SRP111321
Cry2 is critical for circadian regulation of myogenic differentiation by Bclaf1-mediated mRNA stabilization of cyclin D1 and Tmem176b
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Circadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes due to inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2-/- mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms. Overall design: mRNA profiles of Cry1 knockdown, Cry2 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.

Publication Title

Cry2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP132298
Targeting CREBBP/EP300 bromodomains in cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Changes in gene expression caused by CREBBP/EP300 bromodomain inhibitors in a CML cell line Overall design: K562 cells were treated with CBP30 and I-CBP112 and changes in gene expression were evaluated by RNA-seq

Publication Title

CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP068961
Targeting CREBBP/EP300 in cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Antiprolifereative effects of CREBBP/EP300 inhibitors were tested in human leukemia and lymphoma cell lines and the molecular mechanisms responsible for such effects were explored. Overall design: K562 cells were treated with CBP-30 (CREBBP/EP300 bromodomain inhibitor), C646 (CREBBP/EP300 HAT activity inhibitor) and JQ1 (BRD4 inhibitor) and changes in gene expression were evaluated by RNA-seq.

Publication Title

CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075767
Impact of HGFL-Ron signaling on breast cancer stem cell transcriptomic profiles.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Introduction: HGFL-Ron signaling is augmented in human breast cancer and is associated with poor overall prognosis. Here, we investigate the role of HGFL-Ron signaling in murine breast cancer stem cells (BCSC) through characterization of BCSC transcriptomes through RNA-sequencing, focusing on the impact of Ron knockdown through a short hairpin construct. Methods:R7 breas cancer cell lines were drived from mammary tumors in transgenic MMTV_Ron mice. They were sorted based on expression of cell surface markers indicative of lineage negative, CD29hi and CD24+ cells. Bulk R7, sorted cells, and sorted cells treated with shRon were submitted for transcriptomic characterization on the Illumina HiSeq 2500. High quality reads were aligned to the mm9 genome and quantified to generate RPKM. Results: Approximately 30 million reads were aligned to the mouse genome in each sample which corresponded to over 36000 transcripts. Of these, ~16000 were included in analysis. Conclusions: Differential expression analysis indicated that depletion of Ron markely reduces mammosphere formation and self-renewal, and highlighted by the decrease in B-catenin and NFKB pathways. Overall design: Transcriptome profiles of bulk and sorted R7 BCSCs with Ron knockdown through RNA-sequencing.

Publication Title

HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical β-catenin signaling.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE35395
Expression from early pre-hematopoietic progenitors from mouse embryo
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hematopoietic Stem Cells (HSC) are originated during embryonic development from endothelial-like cells located in the ventral side of the dorsal aorta around day E10-12 of murine development. This region is called AGM for Aorta/Gonad/Mesonephros and refers to the tissues around the hemogenic aorta. Cells that emerge from the endothelium and show hematopoietic traits can be distinguished by the expression of the c-kit receptor and finally acquire the CD45 marker.

Publication Title

Hematopoietic stem cell development requires transient Wnt/β-catenin activity.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact