refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 78 results
Sort by

Filters

Technology

Platform

accession-icon GSE34913
Expression data from RAW264.7 murine macrophages infected with Toxoplasma gondii and subsequently stimulated with interferon-gamma
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Toxoplasma strains are known to inhibit the expression of several interferon-gamma induced genes, and a type II strain was shown to dysregulate genome-wide responses to interferon-gamma in human fibroblasts (Kim et al., 2007, J Immunol.). In this study we aimed to determine the effect of infection with three clonal lineages of Toxoplasma, type I, II, and III strains on genome-wide interferon-gamma induced transcription in murine macrophages. We also assessed the effect of the two main Toxoplasma modulators of mouse macrophage transcription, ROP16 and GRA15 (Jensen et al., 2011, Cell Host Microbe).

Publication Title

Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFNγ induced gene expression and STAT1 phosphorylation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP023475
The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and known to contribute to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond individual DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity. Overall design: Bone marrow derived macrophages (BMDM) from female AxB/BxA mice were left unstimulated or stimulated with IFNG/TNF, or CpG for 18 hrs or infected with infected with type II (Pru A7) for 8 hrs. The transcriptional response was then measured using the illumina RNA-seq protocol on an illumuna HiSeq 2000.

Publication Title

The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE25476
Expression data from host cells infected with different strains of Toxoplasma gondii
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2), Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25468
Expression data from Human foreskin fibroblasts (HFFs) infected with Toxoplasma gondii.
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Affymetrix Human Genome U133A Array (hgu133a)

Description

Toxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.

Publication Title

Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25469
Expression data from WT or p65-/- mouse embryonic fibroblasts (MEFs) infected with Toxoplasma gondii.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Toxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.

Publication Title

Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45309
Gene expression Data from Toxoplasma gondii-Infected Murine Bone Marrow-Derived STAT6 and STAT3 Deficient Macrophages
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The Toxoplasma type I ROP16 kinase directly activates the host STAT3 and STAT6 transcription factors and regulates the expression of many host genes. However, many of genes lack known STAT3/6 transcription factor binding sites in their promoter regions.

Publication Title

Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45310
Gene expression profiles of the small intestine and Peyer's patches from mice that were orally infected with Toxoplasma
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The Toxoplasma type I ROP16 kinase directly activates the host STAT3 and STAT6 transcription factors and when transgenically expressed in the orally virulent type II strain, promotes host resistance to oral challenge.

Publication Title

Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44246
Human foreskin fibroblasts (HFFs) infected with type I strains of Toxoplasma gondii
  • organism-icon Toxoplasma gondii, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44189
Expression data from human foreskin fibroblasts (HFFs) infected with type I strains of Toxoplasma gondii.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Type I strains of Toxoplasma gondii exhibit phenotypic variation, but it is uncertain how differently type I strains modulate the host cell. We determined differential host modulation by type I strains through microarray.

Publication Title

Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29584
Expression Data from Toxoplasma gondii Infected Murine Macrophages and Dendritic Cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We wanted to determine how type II versus type III Toxoplasma infection affect host gene expression

Publication Title

Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact