We compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords.
ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.
Sex
View SamplesAmyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat–containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-a, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. Overall design: Transcriptome profiling from iPSC derived motor neurons compared to controls
Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion.
No sample metadata fields
View SamplesThe experiments were performed to understand the molecular basis of plant growth promotion in rice by Rhodotorula mucilaginosa JGTA-S1, an endophytic yeast from Typha angustifolia
Early changes in shoot transcriptome of rice in response to Rhodotorula mucilaginosa JGTA-S1.
Specimen part, Treatment, Time
View SamplesSIN3 is a master transcriptional scaffold protein. SIN3 interacts with RPD3 and other accessory proteins to form a histone modifying complex. A single Sin3A gene encodes multiple isoforms of SIN3, of which SIN3 187 and SIN3 220 are the predominant isoforms. Previous studies demonstrated that SIN3 isoforms play non-redundant roles during fly development. In the current study, we sought to investigate the genes regulated by SIN3 187. Overall design: S2 cells and cells carrying a stable transgene of SIN3 187HA (SIN3 187HA cells) were treated with 0.07 µM CuSO4. CuSO4 treatment led to ectopic expression of SIN3 187HA. S2 cells were used as a control. Following induction, total mRNA was extracted. mRNA profiling of these samples were performed by deep sequencing using Illumina Hiseq2500. Three biological replicates were performed.
Genome-wide studies reveal novel and distinct biological pathways regulated by SIN3 isoforms.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage, Cell line, Treatment, Subject, Time
View SamplesThe beneficial effects of glucocorticoids (GCs) in acute lymphoblastic leukemia (ALL) are based on their ability to induce apoptosis. Omics technologies such as DNA microarray analysis are widely used to study the changes in gene expression and have been successfully implemented in biomarker identification. In addition, time series studies of gene expression enable the identification of correlations between kinetic profiles of glucocorticoid receptor (GR) target genes and diverse modes of transcriptional regulation. This study presents a genome-wide microarray analysis of both our and published Affymetrix HG-U133 Plus 2.0 data in GCs-sensitive and -resistant ALL. GCs-sensitive CCRF-CEM-C7-14 cells were treated with dexamethasone at three time points (0 h, 2 h and 10 h). The treated samples were then compared to the control (0 h).
Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesThe beneficial effects of glucocorticoids (GCs) in acute lymphoblastic leukemia (ALL) are based on their ability to induce apoptosis. Omics technologies such as DNA microarray analysis are widely used to study the changes in gene expression and have been successfully implemented in biomarker identification. In addition, time series studies of gene expression enable the identification of correlations between kinetic profiles of glucocorticoid receptor (GR) target genes and diverse modes of transcriptional regulation. This study presents a genome-wide microarray analysis of both our and published Affymetrix HG-U133 Plus 2.0 data in GCs-sensitive and -resistant ALL. GCs-sensitive CCRF-CEM-C7-14 cells were treated with dexamethasone at three time points (0 h, 2 h and 10 h). The treated samples were then compared to the control (0 h).
Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia.
Specimen part, Cell line, Treatment, Time
View SamplesPglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice are all more sensitive than wild type (WT) mice to dextran sulfate sodium (DSS)-induced colitis. The purpose of this study was to determine which genes are differentially induced by DSS treatment in the colon of Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice compared to WT mice. The results demonstrate higher induction of proinflammatory gene expression in Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice than in WT mice after DSS treatment. The majority of genes whose expression is increased in Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice but not in WT mice are interferon-inducible genes. Thus, Peptidoglycan Recognition Proteins Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 protect mice from excessive inflammatory response and damage to the colon by limiting expression of interferon-inducible genes in the colon.
Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma.
Specimen part
View SamplesFollistatin is a folliculogenesis regulating protein that has been found in relatively high concentration in the female ovarian tissues. Follistatin acts as an antagonist to the function of Activin, which is often found elevated in ovarian carcinogenesis and thus presents a possibility for therapeutic intervention in controlling ovarian cancer. Most of the ovarian cancer occurs in its ovarian surface epithelium (OSE) cells. Although breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor for breast cancer but its role in ovarian cancer is beginning to unfold. We have shown that in ovarian carcinoma cells (SKOV3), stable overexpression of BRCA1 stimulates Follistatin secretion and simultaneously downregulates Activin expression. Moreover, knock down of BRCA1 in immortalized OSE (IOSE) cells from human ovarian tissue demonstrates downregulation of Follistatin secretion with simultaneous up regulation of Activin expression. IOSE cells generated from an ovarian cancer patient with BRCA1 mutation failed to secrete Follistatin in the medium. Our results indicate a novel function for BRCA1 in the form of regulation of the expression of Follistatin in the ovarian cells.
BRCA1 regulates follistatin function in ovarian cancer and human ovarian surface epithelial cells.
Specimen part, Cell line
View SamplesExpression profiling following depletion of Mediator Cdk8 module subunits Cdk8, Cyclin C (CycC), Med12 and Med13 72 hours after dsRNA treatment of Drosophila melanogaster S2 cells. Results provide insight into the role of individual Cdk8 module subunits in regulation of transcription.
Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila.
Specimen part
View Samples