In the present study transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at genome-wide level how signalling and carbon catabolite repression differed in cells grown on either glucose or xylose. The more detailed knowledge about is xylose sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is it rather recognised as a non-fermentable carbon source is important in achieving understanding for further engineering this yeast for more efficient anaerobic fermentation of xylose.
Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae.
No sample metadata fields
View SamplesDCA (3,5-Dichloroanthranilic acid) is a newly identified synthetic defense elicitor. To perform a comparative analysis of defense responses triggered by DCA and the structurally related defense inducer INA (2,6-Dichloroisonicotinic acid) Affymetrix chip experiments were performed with Arabidopsis thaliana seedlings treated with one of these two compounds.
The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis.
No sample metadata fields
View SamplesWe undertook an inter-laboratory effort to generate high-quality quantitative data for a very large number of cellular components in yeast using transcriptome and metabolome analysis. We ensured the high-quality of the experimental data by evaluating a wide range of sampling and measurement techniques. The data were generated for two different yeast strains, each growing under two different growth conditions and based on integrated analysis of the high-throughput data we hypothesize that differences in growth rates and yields on glucose between the two strains are due to differences in protein metabolism.
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains.
No sample metadata fields
View Samplesaffy_seed_kinetic_wheat - affy_seed_kinetic_wheat - Study gene expression during the grain developmental -The aim of the study is to identify the genes that are differentially expressed during the grain development in wheat.-Study gene expression during the grain developmental Sample at 100 degree days, year 2004 and 2006 Sample at 200 degree days, year 2004 and 2006 Sample at 250 degree days, year 2004 and 2006 Sample at 300 degree days, year 2004 and 2006 Sample at 400 degree days, year 2004 and 2006
RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).
No sample metadata fields
View SamplesThe granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. However, the post-transcriptional gene expression studies on miRNA level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Libraries of all 6 samples were sequenced twice, generating 2 technical replicates for each sample. Differential gene expression study was performed on the pooled results of technical replicates.
Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.
Specimen part, Subject
View SamplesThe granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. The current study determined the mRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Differential gene expression study was performed. The identified gene expression profile was also used for predicting targets for miRNAs that were also identified from the same samples (GSE46489).
Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.
Specimen part, Subject
View SamplesBackground: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.
Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.
Cell line, Treatment, Time
View SamplesApproximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes.
Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling.
Specimen part
View SamplesTL1A contributes to the pathogenesis of several chronic inflammatory diseases, including Inflammatory Bowel Diseases by enhancing TH1, TH17, and TH2 responses. TL1A mediates a strong co-stimulation of these TH subsets particularly of mucosal CCR9+ T cells. However, the signaling pathways that TL1A induces in different TH subsets are incompletely understood. Here, we investigated the function of TL1A on human TH17 cells. TL1A together with TGF- IL-6, and IL-23 enhanced the secretion of IL-17 and IFN- from human CD4+ memory T cells. TL1A induced the expression of the transcription factors BATF and T-bet that correlated with the secretion of IL-17 and IFN-. In contrast, TL1A alone induced high levels of IL-22 in memory CD4+ T cells and committed TH17 cells. However, TL1A did not enhance expression of IL-17A in TH17 cells. Expression of the transcription factor aryl hydrocarbon receptor that regulates expression of IL-22 was not affected by TL1A. We performed transcriptome analysis of TH17 cells to determine genes that are transcriptionally regulated by TL1A. transcriptome analysis revealed increased expression of IL-9 in response to TL1A.
The TNF family member TL1A induces IL-22 secretion in committed human T<sub>h</sub>17 cells via IL-9 induction.
Specimen part
View SamplesPaeoniflorin (PF) isolated from paeony root (Paeoniae radix) has been used as an herbal medicine in East Asis for its anti-allergic, anti-inflammatory, and immunoregulatory effects. PF is known to be a chemical heat shock protein (HSP) inducer. The effects on the gene expression in human lymphoma U937 cells treated with PF were investigated using by an Affymetrix GeneChip system. PF treatment induced Hsp70 expression in U937 cells in a dose- and time-dependent manner as shown in Western blot analysis. When the cells were treated with PF (160 g/ml; 30 min), 41 up-regulated and 23 down-regulated genes were identified.
Identification of genes responsive to paeoniflorin, a heat shock protein-inducing compound, in human leukemia U937 cells.
No sample metadata fields
View Samples