refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE22224
Comparative Transcriptional and Phenotypic Peripheral Blood Analysis of Kidney Recipients under Cyclosporin A or Sirolimus Monotherapy
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Due to its low level of nephrotoxicity and capacity to harness tolerogenic pathways, sirolimus (SRL) has been proposed as an alternative to calcineurin inhibitors in transplantation. The exact mechanisms underlying its unique immunosuppressive profile in humans, however, are still not well understood. In the current study we aimed to depict the in vivo effects of SRL in comparison with cyclosporin A (CSA) by employing gene expression profiling and multiparameter flow cytometry on blood cells collected from stable kidney recipients under immunosuppressant monotherapy. SRL recipients displayed an increased frequency of CD4+CD25highFoxp3+ T cells. However, this was accompanied by an increased number of effector memory T cells and by enrichment in NFkB-related pro-inflammatory expression pathways and monocyte and NK cell lineage-specific transcripts. Furthermore, measurement of a transcriptional signature characteristic of operationally tolerant kidney recipients failed to detect differences between SRL and CSA treated recipients. In conclusion, we show here that the blood transcriptional profile induced by SRL monotherapy in vivo does not resemble that of operationally tolerant recipients and is dominated by innate immune cells and NFkB-related pro-inflammatory events. These data provide novel insights on the complex effects of SLR on the immune system in clinical transplantation.

Publication Title

Comparative transcriptional and phenotypic peripheral blood analysis of kidney recipients under cyclosporin A or sirolimus monotherapy.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP149483
RNAseq of CD31-/CD45- pneumocytes after 4 weeks of KRasG12V activation by tamoxifen
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the reporter gene LacZ (located next to the oncogene in the same polycistronic mRNA), by loading CD31-/CD45- pneumocytes with the LacZ-activated fuorogenic molecule FDG prior to FACS sorting. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.

Publication Title

Sirt1 protects from K-Ras-driven lung carcinogenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP149487
RNAseq of CD31-/CD45- pneumocytes after 4 weeks of KRasG12V activation by tamoxifen and 2 weeks of chase
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment plus 2 weeks without tamoxifen. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the fluorescent reporter gene Katushka (located at an independent locus), by detecting Katushka fluorescence. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.

Publication Title

Sirt1 protects from K-Ras-driven lung carcinogenesis.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE18015
Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs) are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM.

Publication Title

Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE3541
DNA microarray reveals novel genes induced by mechanical forces in fetal lung type II epithelial cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Mechanical forces are essential for normal fetal lung development. However, the cellular and molecular mechanisms regulating this process remain largely unknown. In the present study, we used oligonucleotide microarray technology to investigate gene expression profile in cultured E19 rat fetal lung type II epithelial cells exposed to a level of mechanical strain similar to that observed in utero. Significance Analysis of Microarrays (SAM) identified 92 genes differentially expressed by strain. Interestingly, several members of the solute carrier family of amino acid transporters, genes involved in amino acid synthesis and development, and amiloride-sensitive epithelial sodium channel gene were induced by strain. These results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Thus, this study identifies genes induced by strain that may be important for amino acid signaling pathways, protein synthesis and development in fetal type II cells. In addition, these data suggest that mechanical forces may contribute to facilitate lung fluid reabsorption in preparation for birth. Taken together, the present investigation provides further insights into how mechanical forces may modulate fetal lung development.

Publication Title

DNA microarray reveals novel genes induced by mechanical forces in fetal lung type II epithelial cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80814
IL-2 therapy restores regulatory T cell dysfunction induced by calcineurin inhibitors
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

CNIs drastically modify the Treg specific transcriptional program in vivo in an IL-2 dependent manner

Publication Title

IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13902
BW25113 fhlA/pCA24N-FhlA133 vs fhlA/pCA24N-FhlA in modified-complex 20 mM formate at 37C
  • organism-icon Escherichia coli
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Variant FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) had eight- fold higher hydrogen production than FhlA wild-type under 30 min of anaerobic incubation in modified-complex 20 mM formate at 37C. The mechanism by which the FhlA133 mutations increase hydrogen production is by increasing the transcription of all of the genes activated by the native FhlA (FHL complex).

Publication Title

Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35014
Discovery of genes regulated by the metastasis suppressor gene, RhoGDI2
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A number of studies find that metastasis suppressor proteins, including RhoGDI2, may function in part though controlling expression of genes regulating metastasis (reviewed in Smith and Theodorescu, Nature Reviews Cancer, 2009, PMID: 19242414). To uncover systematically gene expression patterns dependent on RhoGDI2 expression, we profiled gene expression in stably transfected control (GFP empty vector) UM-UC-3 bladder carcinoma cells (which have lost endogenous expression of RhoGDI2, as occurs commonly in the progression of bladder cancer PMID: 15173088), as well as stably transfected GFP-tagged RhoGDI2 expressing UM-UC-3 cells.

Publication Title

RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE46150
Gene expression profiling of primary mouse embryonic palatal mesenchymal cells in Tgfbr2 mutant mouse models
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The overall goal of this project is to investigate the role of TGF-beta signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of primary mouse embryonic palatal mesenchymal (MEPM) cells from wild type mice as well as those with a neural crest specific conditional inactivation of the Tgfbr2 gene. The latter mice provide a model of cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions.

Publication Title

Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77154
IFN influences epithelial anti-viral responses via histone methylation of the RIG-I promoter
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This in-vitro study suggests the inflammatory environment of naive epithelial cells can induce epigenetic modulation of innate immune responses at the level of histone methylation and potentially lead to long-term impacts on anti-viral immunity.

Publication Title

IFN-γ Influences Epithelial Antiviral Responses via Histone Methylation of the RIG-I Promoter.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact