refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE10595
Interaction of bone marrow stroma and monocytes: bone marrow stromal cell lines cultured with monocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The hematopoietic microenvironment consists of non-hematopoietic derived stromal elements and hematopoietic derived monocytes and macrophages which interact and function together to control the proliferation and differentiation of early blood-forming cells. Two human stromal cell lines (HS-5 and HS-27a) representing distinct functional components of this microenvironment have been extensively characterized and shown to influence monocyte gene expression. This series of gene expression profiles is intended to extend the previous studies and identify which gene expression changes may require cell-cell contact or occur in the stromal cells as a result of monocyte influence;or in the monocytes as a result of stormal influences.

Publication Title

Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE9390
Interaction of bone marrow stroma and monocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The bone marrow microenvironment is a complex mixture of cells that function in concert to regulate hematopoiesis. Cellular components include fixed nonhematopoietic stromal elements as well as monocytes and resident macrophages, which are derived from the hematopoietic stem cells. Although these monocyte-lineage cells are reported to modify stromal cell function, the reverse also occurs. Given the secretory capability of the monocyte/macrophage and their various potential functions, it is not surprising that stromal cells contained within a particular niche can modify monocyte gene expression and functional maturation.

Publication Title

Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE3491
Interindividual Variability in LPS Responses
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

We used an unbiased approach to identify differences in gene expression that may account for the high degree of interindividual variability in inflammatory responses to LPS in the normal human population. We measured LPS-induced cytokine production ex vivo in whole blood from 102 healthy human subjects and identified individuals who consistently showed either very high or very low responses to LPS. Comparison of gene expression profiles between the lpshigh and lpslow individuals revealed 80 genes that were differentially expressed in the presence of LPS and 21 genes that were differentially expressed in the absence of LPS (p < 0.005, ANOVA). Expression of a subset of these genes was confirmed using real-time RT-PCR. These data illustrate a novel approach to the identification of factors that determine interindividual variability in innate immune inflammatory responses.

Publication Title

Identification of high and low responders to lipopolysaccharide in normal subjects: an unbiased approach to identify modulators of innate immunity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE34060
Expression data of Sox9+ and Ngn3+ mouse pancreas cells at different stages of development
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Genes specific to Sox9+ pancreatic progenitors were identified by comparing the gene expression in embryonic and adult Sox9+ cells.

Publication Title

A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47712
Functional studies of the Yeast Mediator Tail Module Subunits
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when MED5/15 or MED15/16 are inactivated together.

Publication Title

Functional studies of the yeast med5, med15 and med16 mediator tail subunits.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40686
Foxp3 exploits a preexistent enhancer landscape for regulatory T cell lineage specification
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40685
Foxp3 exploits a preexistent enhancer landscape for regulatory T cell lineage specification [Expression]
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulatory T (Treg) cells, whose identity and function are defined by the transcription factor Foxp3, are indispensable for immune homeostasis. It is unclear whether Foxp3 exerts its Treg lineage specification function through active modification of the chromatin landscape and establishment of new enhancers or by exploiting a pre-existing enhancer landscape. Analysis of the chromatin accessibility of Foxp3-bound enhancers in Treg and Foxp3-negative T cells showed that Foxp3 was bound overwhelmingly to pre-accessible enhancers occupied by its cofactors in precursor cells or a structurally related predecessor. Furthermore, the bulk of Foxp3-bound Treg cell enhancers inaccessible in Foxp3- CD4+ cells became accessible upon T cell receptor activation prior to Foxp3 expression with only a small subset associated with several functionally important genes being exclusively Treg cell-specific. Thus, in a late cellular differentiation process Foxp3 defines Treg cell functionality in an opportunistic manner by largely exploiting the preformed enhancer network instead of establishing a new enhancer landscape.

Publication Title

Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106260
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE19701
Time series gene expression data from adult rat tail MNs following spinal cord transection
  • organism-icon Rattus norvegicus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalizaion. To understand the moleclar mechanism behind this pheneomona we examined the transcriptional response of the motor neurons after spinal cord injury as it progress over time.

Publication Title

Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE103374
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria and gluten [CTR glut bmix, bmix and gluten]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact