Drugs that target specific gene alterations have proven beneficial in the treatment of cancer. Because cancer cells have multiple resistance mechanisms, it is important to understand the downstream pathways of the target genes and monitor the pharmacodynamic markers associated with therapeutic efficacy.
ERK Signal Suppression and Sensitivity to CH5183284/Debio 1347, a Selective FGFR Inhibitor.
No sample metadata fields
View SamplesTo identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)
Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.
Sex, Age, Specimen part
View SamplesTo identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)
Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.
Sex, Age, Specimen part
View SamplesGeneChip-based screen for genes induced in the initial phase of neural differentiation from ES cells.
Intrinsic transition of embryonic stem-cell differentiation into neural progenitors.
No sample metadata fields
View SamplesRegulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its coactivator protein Yki. The role of mammalian Tead proteins in growth regulation, however, remains unknown. Here we examined the role of mouse Tead proteins in growth regulation. In NIH3T3 cells, cell density and Hippo signaling regulated the activity of Tead proteins by modulating nuclear localization of a Yki homologue, Yap, and the resulting change in Tead activity altered cell proliferation. Tead2-VP16 mimicked Yap overexpression, including increased cell proliferation, reduced cell death, promotion of EMT, lack of cell contact inhibition, and promotion of tumor formation. Growth promoting activities of various Yap mutants correlated with their Tead-coactivator activities. Tead2-VP16 and Yap regulated largely overlapping sets of genes. However, only a few of the Tead/Yapregulated genes in NIH3T3 cells were affected in Tead1-/-;Tead2-/- or Yap-/- embryos. Most of the previously identified Yap-regulated genes were not affected in NIH3T3 cells or mutant mice. In embryos, levels of nuclear Yap and Tead1 varied depending on cell types. Strong nuclear accumulation of Yap and Tead1 were seen in myocardium, correlating with requirements of Tead1 for proliferation. However, their distribution did not always correlate with proliferation. Taken together, mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling, but the mechanisms by which Tead/Yap regulate cell proliferation differ depending on cell types, and Tead, Yap and Hippo signaling may play multiple roles in mouse embryos.
Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling.
No sample metadata fields
View SamplesWe found that a H3K4 specific histone methyltransferase MLL1, a mammalian homologue of Drosophila trithorax, is essential for circadian transcription. MLL1 is in a complex with CLOCK:BMAL1 and contributes to their rhythmic recruitment to circadian promoters and cyclic H3K4 tri-metylation. To analyze the function of MLL1 on circadian gene regulation, we performed comparative microarray analysis of global gene expression levels in WT and MLL1-deficient MEF, at two different circadian time points (CT18 and CT30). This analysis identified several genes whose expression levels were remarkably changed between CT18 and CT30 in WT and MLL1-KO MEF. Typical clock-regulated genes such as Per2, Per3, Bmal1, or Dbp were found to be changing in WT but not in MLL1-KO MEFs.
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
Specimen part, Time
View SamplesHuman embryonic stem cells (hESCs) have the unique property of immortality, ability to infinitely self-renew and survive in vitro. In contrast to tumor-deribed cells, their immortality are free from any genomic abberations. Instead, they depend on the AKAP-Lbc/Rho signaling cascade. To understand the downstream way, we performed RNA-seq analyses between normal and AKAP-Lbc-depleted hESCs using the doxycyclin-inducible gene silensing strategy. Overall design: We use the genetically modified hESCs in which AKAP-13-targeting shRNA is induced by doxycyclin(dox) treatment. To minimize cell loss during treatment, anti-apoptotic factor Bcl-XL is overexpressed. We collected RNA from dox-treated and untreated cells in biological triplicate. We measured gene expression in these 2 sample groups using RNA-seq (illumina HiSeq) .
Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.
No sample metadata fields
View SamplesGenome instability is a potential limitation to the research and therapeutic application of induced pluripotent stem cells (iPSCs). Observed genomic variations reflect the combined activities of DNA damage, cellular DNA damage response (DDR), and selection pressure in culture. To understand the contribution of DDR on the distribution of copy number variations (CNVs) in iPSCs, we mapped CNVs of iPSCs with mutations in the central DDR gene ATM onto genome organization landscapes defined by genome-wide replication timing profiles. We show that following reprogramming the early and late replicating genome is differentially affected by CNVs in ATM deficient iPSCs relative to wild type iPSCs. Specifically, the early replicating regions had increased CNV losses during retroviral reprogramming. This differential CNV distribution was not present after later passage or after episomal reprogramming. Comparison of different reprogramming methods in the setting of defective DNA damage response reveals unique vulnerability of early replicating open chromatin to retroviral vectors.
Influence of ATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells.
Specimen part
View SamplesCancer cells have wide variety of gene expression profile. The objective of the study is to reveal the cancer-associated gene expression profile.
Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition.
Specimen part
View SamplesPlants have evolved shoot elongation mechanisms to escape from diverse environmental stresses such as flooding and vegetative shade. The apparent similarity in growth responses suggests possible convergence of the signalling pathways. Shoot elongation is mediated by passive ethylene accumulating in flooded plant organs and by changes in light quality and quantity under vegetation shade. Here we study hypocotyl elongation as a proxy for shoot elongation and delineated Arabidopsis hypocotyl length kinetics in response to ethylene and shade. Based on these kinetics, we further investigated ethylene and shade-induced genome-wide gene expression changes in hypocotyls and cotyledons separately. Both treatments induced a more extensive transcriptome reconfiguration in the hypocotyls compared to the cotyledons. Bioinformatics analyses suggested contrasting regulation of growth promotion- and photosynthesis-related genes. These analyses also suggested an induction of auxin, brassinosteroid and gibberellin signatures and the involvement of several candidate regulators in the elongating hypocotyls. Pharmacological and mutant analyses confirmed the functional involvement of several of these candidate genes and physiological control points in regulating stress-escape responses to different environmental stimuli. We discuss how these signaling networks might be integrated and conclude that plants, when facing different stresses, utilise a conserved set of transcriptionally regulated genes to modulate and fine tune growth.
Ethylene- and Shade-Induced Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators.
Specimen part, Treatment, Time
View Samples