refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-731
Transcription profiling by array of hippocampus from CIC-6 knock-out mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

3 pairs of wt and ClC-6 knockout mice, RNA from p14 hippocampus

Publication Title

Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6.

Sample Metadata Fields

Sex, Age, Specimen part, Subject, Time

View Samples
accession-icon SRP014006
RNA sequencing in fly heads to examine the effect of spermidine feeding on transcription in the ageing fly brain.
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

mRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.

Publication Title

Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE50195
Expression data for human retinal pigment epithelium (RPE)/choroid - early age-related macular degeneration (AMD) and control samples
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [AltAnalyz probeset-to-Ensembl mapping (huex10st)

Description

Purpose: Age-related degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE)/choroid from early AMD and control maculas using exon-based arrays. Methods: Gene expression levels in nine early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using DAVID, and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. CFH genotype was also assessed and differential expression was analyzed with respect to high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Results: Seventy-five genes were identified as differentially expressed (raw p-value < 0.01; >50% fold change, mean log2 expression level in AMD or control median of all average gene expression values); however, no genes were significant (adj. p-value < 0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change < 0.5; raw p-value < 0.01), 18 genes were identified by DAVID analysis as associated with vision or neurological processes. GSEA of RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis with respect to CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p-value = 0.0008). Conclusions: GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout occurs early in the pathogenesis of AMD.

Publication Title

Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP194595
Single-cell RNA-Seq Investigation of Foveal and Peripheral Expression in the Human Retina
  • organism-icon Homo sapiens
  • sample-icon 95 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: Single-cell RNA sequencing has revolutionized cell-type specific gene expression analysis. The goals of this study are to compare cell specific gene expression patterns between retinal cell types originating from the fovea and the periphery of human eyes. Methods: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Results: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Conclusions: Our study generates a large atlas of human retinal transcriptomes at the single cell level. We identified the majority of expected neural and supportive cell types, and describe regional differences in gene expression between the fovea and the periphery. Our results show that that single-cell RNA sequencing can be performed on human retina after cryopreservation, and that cone photoreceptors and Muller cells demonstrate region-specific patterns of gene expression. Overall design: mRNA profiles for thousands of cells from foveal and peripheral retinal isolates were generated from three human donor eyes using 10X Genomics Chromium single-cell system followed by sequencing on an Illumina HiSeq 4000.

Publication Title

Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE45941
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Maintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.

Publication Title

Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5680
Expression data for an eQTL experiment in rat eye
  • organism-icon Rattus norvegicus
  • sample-icon 120 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We used expression quantitative trait locus mapping in the laboratory rat (Rattus norvegicus) to gain a broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant to human eye disease. Of >31,000 gene probes represented on an Affymetrix expression microarray, 18,976 exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression among 120 F2 rats generated from an SR/JrHsd x SHRSP intercross. Genome-wide linkage analysis with 399 genetic markers revealed significant linkage with at least one marker for 1,300 probes (alpha = 0.001; estimated empirical false discovery rate = 2%). Both contiguous and noncontiguous loci were found to be important in regulating mammalian eye gene expression. We investigated one locus of each type in greater detail and identified putative transcription-altering variations in both cases. We found an inserted cREL binding sequence in the 5' flanking sequence of the Abca4 gene associated with an increased expression level of that gene, and we found a mutation of the gene encoding thyroid hormone receptor beta 2 associated with a decreased expression level of the gene encoding short-wave sensitive opsin (Opn1sw). In addition to these positional studies, we performed a pairwise analysis of gene expression to identify genes that are regulated in a coordinated manner and used this approach to validate two previously undescribed genes involved in the human disease Bardet-Biedl syndrome. These data and analytic approaches can be used to facilitate the discovery of additional genes and regulatory elements involved in human eye disease.

Publication Title

Regulation of gene expression in the mammalian eye and its relevance to eye disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47778
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage
  • organism-icon Caenorhabditis elegans
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51162
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, daf-2, daf-16, daf-2;daf-16]
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51161
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, xpa-1]
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE74297
MALT1 protease activity controls the expression of inflammatory genes in keratinocytes upon Zymosan stimulation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.

Publication Title

MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact