refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon SRP090298
Epigenome maps of time-resolved monocyte to macrophage differentiation and innate immune memory (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as LPS. We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time dependent manner. ChIP-seq, RNA-seq, WGBS and ATAC-seq data were generated. This analysis identified epigenetic programs in tolerance and trained macrophages, and the potential transcription factors involved. Overall design: Time-course in vitro culture of human monocytes. Two innate immune memory states can be induced in culture through an initial exposure of primary human monocytes to either LPS or BG for 24 hours, followed by removal of stimulus and differentiation to macrophages for an additional 5 days. Cells were collected at baseline (day 0), 1 hour, 4 hour, 24 hour and 6 days.

Publication Title

β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon E-TABM-89
Transcription profiling by array of mouse embryonic stem cells after treatment with cisplatin
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

To gain insight in the kinetics and interplay of the predominant transcriptional responses of DNA damage signalling pathways in undifferentiated cells, mouse embryonic stem cells were exposed to cisplatin at four different time points (2, 4, 8 and 24 hr) and concentrations (1, 2, 5 and 10 uM). RNA was isolated and subjected to genome-wide expression profiling.

Publication Title

A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response.

Sample Metadata Fields

Specimen part, Compound, Time

View Samples
accession-icon GSE139075
The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signalling in liver
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

TGR5 (Gpbar1) is a G protein-coupled receptor responsive to bile acids (BAs), which is expressed in different non-parenchymal cells of the liver, including biliary epithelial cells, liver-resident macrophages, sinusoidal endothelial cells (LSECs) and activated hepatic stellate cells (HSCs). Mice with targeted deletion of TGR5 are more susceptible towards cholestatic liver injury induced by cholic acid-feeding and bile duct ligation, resulting in a reduced proliferative response and increased liver injury. Conjugated lithocholic acid (LCA) represents the most potent TGR5 BA ligand and LCA-feeding has been used as a model to rapidly induce severe cholestatic liver injury in mice. Thus, TGR5 knockout (KO) mice and wildtype littermates were fed a diet supplemented with 1%LCA for 84 hours. Liver injury and gene expression changes induced by the LCA-diet revealed an enrichment of pathways associated with inflammation, proliferation and matrix remodelling. Knockout of TGR5 in mice caused upregulation of endothelin-1 (ET-1) expression in the livers. Analysis of TGR5-dependent ET-1 signalling in isolated LSECs and HSCs demonstrated that TGR5 activation reduces ET-1 expression and secretion from LSECs and triggers internalization of the ET-1 receptor in HSCs dampening ET-1 responsiveness. Thus, we identified two independent mechanisms by which TGR5 inhibits ET-1 signalling and modulates portal pressure.

Publication Title

The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE59333
Global transcript analysis of livers and/or jejunums of liver-specific Lrh-1 knockout as well as Lrh-1 K289R knockin mice
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59303
Global hepatic transcript data from LRH-1 WT and LRH-1 K289R jejunums
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Transcript data from LRH-1 WT and LRH-1 K289R jejunums from mice fed ad libitum and sacrificed at 7 am

Publication Title

SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75225
Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engrafted in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.

Publication Title

Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19420
Skeletal muscle mitochondrial dysfunction is secondary to T2DM
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Skeletal muscle mitochondrial dysfunction is secondary to T2DM and can be improved by long-term regular exercise training

Publication Title

Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes.

Sample Metadata Fields

Age

View Samples
accession-icon GSE87477
JQ1 treatment of germ cell cancer cells induces differentiation, apoptosis and cell cycle arrest
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Type II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.

Publication Title

The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE45941
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Maintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.

Publication Title

Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66336
Mechanical stress enhances CD9 expression in cultured podocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomes of differentiated cells of the conditionally immortalized mouse podocyte cell line SVI (Schiwek et al., Kidney Int. 66: 91-101, 2004) were determined as described in Warsow et al. (Kidney Int. 84: 104-115, 2013) after application of mechanical stress (Endlich et al., J. Am. Soc. Nephrol. 12: 413-422, 2001) as compared to control conditions.

Publication Title

Mechanical stress enhances CD9 expression in cultured podocytes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact