Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance.
Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.
No sample metadata fields
View SamplesExpression profiling of MRC5, IFN gamma treated MRC5 and PGF cells.
Reconfiguration of genomic anchors upon transcriptional activation of the human major histocompatibility complex.
No sample metadata fields
View SamplesThis study aimed to characterize differences in gene expression in piglets inoculated with porcine circovirus type 2 (PCV2), the essential causative agent of postweaning multisystemic wasting syndrome (PMWS). Comparisons between control and PCV2-inoculated pigs were done at five different time points: 1, 2, 5, 8, and 29 days post-inoculation.
Time course differential gene expression in response to porcine circovirus type 2 subclinical infection.
Age, Specimen part
View SamplesPostweaning multisystemic wasting syndrome (PMWS) is one of the pig diseases with major economic impact worldwide. Clinical, pathologic and some immunologic aspects of this disease are well-known, but the molecular mechanisms underlying pathogenic mechanisms of the disease are still poorly understood. The objective of the present study was to investigate the global changes in gene expression in the mediastinal lymph nodes from pigs naturally affected by PMWS and healthy counterparts, using the Affymetrix Porcine Genechip. This is the first study on gene expression in pigs naturally affected by PMWS. The present results allowed identifying potential mechanisms underlying the inflammation, lymphocyte depletion in lymphoid tissues and immune suppression, which are key features of PMWS.
Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome.
Age, Specimen part, Disease, Disease stage
View SamplesWe subjected yeast to two stresses, oxidative stress, which under current settings induces a fast and transient response in mRNA abundance, and DNA damage, which triggers a slow enduring response. Using microarrays, we performed a transcriptional arrest experiment to measure genome-wide mRNA decay profiles under each condition. Genome-wide decay kinetics in each condition were compared to decay experiments that were performed in a reference condition (only transcription inhibition without an additional stress) to quantify changes in mRNA stability in each condition. We found condition-specific changes in mRNA decay rates and coordination between mRNA production and degradation. In the transient response, most induced genes were surprisingly destabilized, while repressed genes were somewhat stabilized, exhibiting counteraction between production and degradation. This strategy can reconcile high steady-state level with short response time among induced genes. In contrast, the stress that induces the slow response displays the more expected behavior, whereby most induced genes are stabilized, and repressed genes destabilized. Our results show genome-wide interplay between mRNA production and degradation, and that alternative modes of such interplay determine the kinetics of the transcriptome in response to stress.
Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation.
No sample metadata fields
View SamplesWe were interested to explain why p53 binds some high affinity sites in contrast to other high affinity sites that are not bound by p53.
p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy.
Cell line, Treatment
View SamplesMutations in the poly(A) ribonuclease (PARN) gene cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita (DC)1,2, but how PARN deficiency impacts telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem (iPS) cells from DC patients with PARN mutations, we show that PARN is required for the 3' end maturation of the telomerase RNA component (TERC). Patient cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3' termini reveals that PARN is required for removal of posttranscriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results reveal a novel role for PARN in the biogenesis of TERC, and provide a mechanism linking PARN mutations to telomere diseases. Overall design: mRNA sequencing of fibroblasts, induced pluripotent stem cells, and 293 cell line.
Poly(A)-specific ribonuclease (PARN) mediates 3'-end maturation of the telomerase RNA component.
No sample metadata fields
View SamplesThe telomerase RNA component (TERC) is a critical determinant of cellular self renewal. Poly(A)-specific ribonuclease (PARN) is required for post-transcriptional maturation of TERC. PARN mutations lead to incomplete 3' end processing and increased destruction of nascent TERC RNA transcripts, resulting in telomerase deficiency and telomere diseases. Here, we determined that overexpression of TERC increased telomere length in PARN-deficient cells and hypothesized that decreasing post-transcriptional 3' oligo-adenylation of TERC would counteract the deleterious effects of PARN mutations. Inhibition of the noncanonical poly(A) polymerase PAP-associated domain–containing 5 (PAPD5) increased TERC levels in PARN-mutant patient cells. PAPD5 inhibition was also associated with increases in TERC stability, telomerase activity, and telomere elongation. Our results demonstrate that manipulating post-transcriptional regulatory pathways may be a potential strategy to reverse the molecular hallmarks of telomere disease. Overall design: mRNA sequencing of induced pluripotent stem cells and 293 cell line.
Posttranscriptional manipulation of TERC reverses molecular hallmarks of telomere disease.
Specimen part, Subject
View SamplesRationale. Lung inflammation in premature infants contributes to development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without apparent adverse effects as occur with systemic dexamethasone therapy. Objectives. To determine effects of budesonide on differential genes expression in human fetal lung Overall design: Methods. We prepared RNA from 3 samples of human fetal lung at 23 weeks gestation before (preculture, PC) and after 4 days culture as explants with (Bud) or without (Way) budesonide (30 nM) and performed RNAseq on the 9 samples.
Antiinflammatory Effects of Budesonide in Human Fetal Lung.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.
Sex, Age, Specimen part, Subject
View Samples