refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1300 results
Sort by

Filters

Technology

Platform

accession-icon GSE18637
Do Airway Epithelium Air-liquid Cultures Represent the In Vivo Airway Epithelium Transcriptome?
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human airway epithelial cells cultured in vitro at air-liquid interface (ALI) form a pseudostratified epithelium that forms tight junctions and cilia, and produces mucin, and are widely used as a model of differentiation, injury, and repair. To assess how closely the transcriptome of ALI epithelium matches that of in vivo airway epithelial cells, we used microarrays to compare the transcriptome of human large airway epithelial cells cultured at ALI with the transcriptome of large airway epithelium obtained via bronchoscopy and brushing. Gene expression profiling showed global gene expression correlated well between ALI cells and brushed cells, but there were some differences. Gene expression patterns mirrored differences in proportions of cell types (ALI have higher percentages of basal cells, brushed cells have higher percentages of ciliated cells), with ALI cells expressing higher levels of basal cell-related genes and brushed cells expressing higher levels of cilia-related genes. Pathway analysis showed ALI cells had increased expression of cell cycle and proliferation genes, while brushed cells had increased expression of cytoskeletal organization and humoral immune response genes. Overall, ALI cells are a good representation of the in vivo airway epithelial transcriptome, but for some biologic questions, the differences in the in vitro vs in vivo environments need to be considered.

Publication Title

Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome?

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE22047
Modulation of Cystatin A Expression in Human Airway Epithelium Related to Genotype, Smoking COPD and Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 220 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cystatin A (gene: CSTA), is up-regulated in non-small-cell lung cancer (NSCLC) and dysplastic vs normal human bronchial epithelium. In the context that chronic obstructive pulmonary disease (COPD), a small airway epithelium (SAE) disorder, is independently associated with NSCLC (especially squamous cell carcinoma, SCC), but only occurs in a subset of smokers, we hypothesized that genetic variation, smoking and COPD modulate CSTA gene expression levels in SAE, with further up-regulation in SCC. Gene expression was assessed by microarray in SAE of 178 individuals [healthy nonsmokers (n=60), healthy smokers (n=82), and COPD smokers (n=36)], with corresponding large airway epithelium (LAE) data in a subset (n=52). Blood DNA was genotyped by SNP microarray. Twelve SNPs upstream of the CSTA gene were all significantly associated with CSTA SAE gene expression (p<0.04 to 5 x 10-4). CSTA gene expression levels in SAE were higher in COPD smokers (28.4 2.0) than healthy smokers (19.9 1.4, p<10-3), who in turn had higher levels than nonsmokers (16.1 1.1, p<0.04). CSTA LAE gene expression was also smoking-responsive (p<10-3). Using comparable publicly available NSCLC expression data, CSTA was up-regulated in SCC vs LAE (p<10-2) and down-regulated in adenocarcinoma vs SAE (p<10-7). All phenotypes were associated with significantly different proportional gene expression of CSTA to cathepsins. The data demonstrate that regulation of CSTA expression in human airway epithelium is influenced by genetic variability, smoking, and COPD, and is further up-regulated in SCC, all of which should be taken into account when considering the role of CSTA in NSCLC pathogenesis.

Publication Title

Modulation of cystatin A expression in human airway epithelium related to genotype, smoking, COPD, and lung cancer.

Sample Metadata Fields

Race

View Samples
accession-icon GSE13896
Smoking-dependent Reprogramming of Alveolar Macrophage Polarization: Implication for Pathogenesis of COPD
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: When exposed to specific stimuli, macrophages exhibit distinct activation programs, M1 and M2 polarization, that define macrophage function as inflammatory/immune effectors or anti-inflammatory/tissue remodeling cells, respectively. Due to their position on the lung epithelial surface, alveolar macrophages (AM) directly interact with environmental stimuli such as cigarette smoke, the major risk factor for the development of chronic obstructive pulmonary disease (COPD). Based on the current paradigm that, in response to smoking, AM contribute to both inflammatory and tissue remodeling processes in the lung relevant to the pathogenesis of COPD, we hypothesized that chronic exposure to cigarette smoking activates both the M1 and M2 polarization programs in AM. Methods and Findings: To assess this hypothesis, global transcriptional profiling with TaqMan confirmation and flow cytometry analysis was carried out on AM obtained by bronchoalveolar lavage of 24 healthy nonsmokers, 34 healthy smokers and 12 smokers with COPD to assess the expression of 41 M1 genes and 32 M2 genes in each group. Contrary to our expectations, while there was up-regulation of some genes typical for M2-related phenotypes, AM of healthy smokers exhibited substantial suppression of M1-related inflammatory/immune genes. These M1- and M2-related changes progressed with the development of smoking-induced lung disease, with AM of smokers with COPD exhibiting further down-regulation of M1-related genes accompanied with further up-regulation of some M2-related genes. Conclusion: The data demonstrates that the modifications of the AM transcriptome associated with smoking result in a unique phenotype characterized by reprogramming of AM towards M1-deactivated partially M2-polarized macrophages and suggests that, while AM likely contribute to smoking-induced tissue remodeling, the role of AM in the early pathogenesis of smoking-induced COPD in humans is not inflammatory. This concept is a departure from the conventional concept that AM-mediated inflammation participates in the early derangements of the lung induced by smoking, and suggests a novel paradigm for conceptualizing COPD and developing new approaches to prevent the development of smoking-induced lung disease.

Publication Title

Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE20257
Smoking-induced Disarray of the Apical Junctional Complex Gene Expression Architecture in the Human Airway Epithelium
  • organism-icon Homo sapiens
  • sample-icon 118 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Full Length HuGeneFL Array (hu6800), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The apical junctional complex (AJC), composed of tight junctions and adherens junctions, is essential for maintaining epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are both associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating AJC integrity in the small airway epithelium (SAE), the primary site of pathological changes in COPD. Transcriptome analysis revealed a global down-regulation of physiological AJC gene expression in the SAE of healthy smokers (n=53) compared to healthy nonsmokers (n=59), an observation associated with changes in molecular pathways regulating epithelial differentiation such as PTEN signaling and accompanied by induction of cancer-related AJC genes. Genome-wide co-expression analysis identified a smoking-sensitive AJC transcriptional network. The overall expression of AJC-associated genes was further decreased in COPD smokers (n=23). Exposure of human airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC-related genes, accompanied by decreased transepithelial resistance. Thus, cigarette smoking alters the AJC gene expression architecture in the human airway epithelium, providing a molecular basis for the dysregulation of airway epithelial barrier function during the development of smoking-induced lung disease.

Publication Title

Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE24337
The Human Airway Epithelial Basal Cell Transcriptome
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background. The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem / progenitor cells for the other airway cell types. The objective of this study is to better understand basal cell biology by defining the subset of expressed genes that characterize the signature of human airway epithelial basal cells.

Publication Title

The human airway epithelial basal cell transcriptome.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE27681
RNA-Seq Quantification of the Transcriptome of Genes Expressed in the Small Airway Epithelium of Nonsmokers and Smokers
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The small airway epithelium (SAE) the pseudostratified epithelium that covers the majority of the human airway surface from the 6th generation to the alveoli, is the major site of lung disease caused by smoking, and the cell population that exhibits the earliest manifestations of smoking-induced disease. The focus of this study is to use RNA-Seq (massive parallel sequencing technology) to sequence all polyA+ mRNAs expressed by the SAE of healthy nonsmokers to gain new insights into the biology of the SAE, and how these cells respond to cigarette smoke. Taking advantage of RNA-Seq providing quantitative mRNA levels, that data demonstrates that while the SAE shares its transcriptome with many cell types, it has unique characteristics that are enriched in this cell population, with the mostly highly expressed genes (SCGB1A1) characteristics of Clara cells, an airway epithelial cell unique to the human small airways. Among other genes expressed by the SAE are those characteristic of ciliated and mucin-producing cells, basal cells and neuroendocrine cells. The RNA-Seq data includes identification of the highly expressed SAE transcription factors, transmembrane receptors, signaling ligands and growth factors. RNA-Seq permitted quantification of expression of highly homologous gene families, the absolute smoking-induced changes in SAE gene expression, including genes expressed at low levels, and assessment of the effect of smoking on SAE gene splicing. Together, these observations can serve as the baseline for assessment of the dysregulation of SAE gene expression in human airway disease.

Publication Title

RNA-Seq quantification of the human small airway epithelium transcriptome.

Sample Metadata Fields

Race

View Samples
accession-icon GSE64614
Distal-to-Proximal Re-patterning of Small Airway Epithelium in Smoking-associated Chronic Obstructive Pulmonary Disease
  • organism-icon Homo sapiens
  • sample-icon 191 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The proximal-distal patterning program determines unique structural and functional properties of proximal and distal airways in the adult lung. Based on the knowledge that remod-eling of distal airways is the major pathologic feature of chronic obstructive pulmonary disease (COPD), and that small airway epithelium (SAE), which covers distal airways, is the primary site of the initial smoking-induced changes relevant to COPD pathogenesis, we hypothesized that in COPD smokers, the SAE transcriptome loses its region-specific biologic identity and takes on the transcriptional pattern of the proximal airways. By analyzing human airway epithelium col-lected by bronchoscopic brushings from proximal and distal airways of healthy smokers, proxi-mal and distal airway epithelial transcriptome signatures were identified. Dramatic smoking-dependent suppression of distal signature paralleled by acquisition of the proximal airway epithe-lial phenotype was found in the SAE of COPD smokers. Distal-proximal re-patterning observed in the SAE of smokers in vivo was reproduced in vitro by stimulating SAE basal cells (BC), the stem/progenitor cells of the SAE, with EGF, a growth factor up-regulated in airway epithelium by smoking. Together, this study identifies distal-proximal SAE re-patterning as a characteristic feature of small airway disordering in COPD smokers potentially driven by EGF/EGFR-mediated reprogramming of SAE BC stem/progenitor cells.

Publication Title

Smoking-Dependent Distal-to-Proximal Repatterning of the Adult Human Small Airway Epithelium.

Sample Metadata Fields

Specimen part, Race

View Samples
accession-icon GSE19722
Airway Basal Cells of Healthy Smokers Express an Embryonic Stem Cell Signature Relevant to Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Full Length HuGeneFL Array (hu6800)

Description

Activation of the human embryonic stem cell (hESC)-signature genes has been observed in various epithelial cancers. In this study, we found that the hESC signature is selectively induced in the airway basal stem/progenitor cell population of healthy smokers (BC-S), with a pat-tern similar to that activated in all major types of human lung cancer. We further identified a subset of 6 BC-S hESC genes, whose coherent overexpression in lung AdCa was associated with reduced lung function, poorer differentiation grade, more advanced tumor stage, remarkably shorter survival and higher frequency of TP53 mutations. BC-S shared with hESC and a consid-erable subset of lung carcinomas a common TP53 inactivation molecular pattern which strongly correlated with the BC-S hESC gene expression. These data provide transcriptome-based evi-dence that smoking-induced reprogramming of airway BC towards the hESC-like phenotype might represent a common early molecular event in the development of aggressive lung carci-nomas in humans.

Publication Title

Airway basal cells of healthy smokers express an embryonic stem cell signature relevant to lung cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP024274
Smoking Dysregulates the Human Airway Basal Cell Transcriptome at COPD-linked Risk Locus 19q13.2
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Rationale: Genome-wide association studies (GWAS) and candidate gene studies have identified a number of loci linked to susceptibility of chronic obstructive pulmonary disease (COPD), a smoking-related disorder that originates in the airway epithelium. Objectives: Since airway basal cell (BC) stem/progenitor cells exhibit the earliest abnormalities associated with smoking (hyperplasia, squamous metaplasia), we hypothesized that smoker BC have a dysregulated transcriptome linked, in part, to known GWAS/candidate gene loci. Methods: Massive parallel RNA sequencing was used to compare the transcriptome of BC purified from the airway epithelium of healthy nonsmokers (n=10) and smokers (n=7). The chromosomal location of the differentially expressed genes was compared to loci identified by GWAS and candidate gene studies to confer risk for COPD. Measurements and Main Results: Smoker BC have 676 known genes differentially expressed compared to nonsmoker BC, dominated by smoking up-regulation. Strikingly, 166 (25%) of these genes are located on chromosome 19, with 13 localized to 19q13.2 (p<10-4 compared to chance), including TGFB1, LTBP4, EGLN2 and NFKBIB, genes associated with risk for COPD. Conclusions: These observations provide the first direct link of known genetic risks for smoking-related lung disease with the specific population of lung cells that undergoes the earliest changes associated with smoking. Overall design: The human airway basal cell transcriptome of 7 smokers versus 10 nonsmokers was compared using massive parallel RNA sequencing (Illumina HiSeq 2000).

Publication Title

Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE77659
POU2AF1 Functions in the Human Airway Epithelium to Regulate Expression of Host Defense Genes
  • organism-icon Homo sapiens
  • sample-icon 160 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

Sample Metadata Fields

Specimen part, Cell line, Race, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact