Lasting B-cell persistence depends on survival signals that are transduced by cell surface receptors. Here, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia (CLL) cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase zeta (RPTP). We demonstrate that MK initiates a signaling cascade leading to B cell survival, by binding to RPTP. In mice lacking PTPRZ, the proportion and number of the mature B cell population is reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74 induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and CLL cells. Our results indicate that MK and RPTP are important regulators of the B cell repertoire. These findings could pave the way towards understanding the mechanisms shaping B cell survival, and suggest novel therapeutic strategies based on the blockade of the midkine/RPTP-dependent survival pathway.
The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74.
Age
View SamplesChronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5+ B lymphocytes in peripheral blood, lymphoid organs and BM. The main feature of the disease is accumulation of the malignant cells due to decreased apoptosis. CD84 belongs to the Signaling Lymphocyte Activating Molecule (SLAM) family of immunoreceptors, and has an unknown function in CLL cells. Here, we show that the expression of CD84 is significantly elevated from the early stages of the disease, and is regulated by macrophage migration inhibitory factor (MIF) and its receptor, CD74. Activation of cell surface CD84 initiates a signaling cascade that enhances CLL cell survival. Both immune-mediated neutralization or blockade of CD84 induce cell death in vitro and in vivo. In addition, analysis of samples derived from an on-going clinical trial, in which human subjects were treated with humanized anti-CD74 milatuzumab shows a decrease in CD84 mRNA levels milatuzumab-treated cells. This downregulation was correlated with reduction of Bcl-2 and Mcl-1 message. Thus, our data show that overexpression of CD84 in CLL is an important survival mechanism that appears to be an early event in the pathogenesis of the disease. These findings suggest novel therapeutic strategies based on the blockade of this CD84-dependent survival pathway.
CD84 is a survival receptor for CLL cells.
Disease
View SamplesMultiple myeloma (MM), a plasma cell (PC) malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity within and between patients is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA-seq to study the heterogeneity of 40 individuals along the MM progression spectrum. We define malignant PC at single cell resolution, demonstrating high inter-patient variability that can be explained by expression of known MM drivers and additional putative factors. Within newly diagnosed patients, we identify extensive sub-clonal structures for 10/29 patients. In asymptomatic patients with early disease and in minimal residual disease post-treatment, we detect tumor PC for a subset of the patients, with the same drivers of active myeloma. Single cell analysis of rare circulating tumor cells (CTC) allows detection of malignant PC, which reflect the BM disease. Our work establishes scRNA-seq for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients. Overall design: The study includes 29 newly diagnosed patients with plasma cell neoplasms and 11 control donors, for which bone marrow plasma cells were single cell sorted by FACS, and their mRNA sequenced. For 11 patients, targeted genomic DNA panel analysis for myeloma was performed.
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
No sample metadata fields
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
No sample metadata fields
View SamplesTwo-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and Decapentaplegic
A combinatorial code for pattern formation in Drosophila oogenesis.
No sample metadata fields
View SamplesThis scRNA-seq data is an integral part of a manuscript with the above title. Using computational methods, we were able to reconstruct a detailed branched trajectory reflecting pancreatic endocrine differentiation in the mouse embryo. Analysis of the transcriptional changes occuring during the differentiation suggested that epithelial-to-mesenchymal transition likely plays no role in this process, contrary to the prevailing dogma. Our findings were corroborated with high-resolution imaging of the developing pancreas, revealing how differentiating endocrine progenitors migrate in cohesion, forming bud-like islet precursors, or "peninsulas", and that spatiotemporal collinearity during differentiation leads to the typical core-mantle architecture of the mature, spherical islet. This work led to a complete overhaul of our understanding of how pancreatic islets are developed, laying the ground for the generation of entire islets in vitro as a potential novel source of islet transplantation. Overall design: Single-cell suspensions were prepared from pancreata of Neurogenin 3-eGFP mouse embryos sacrificed at different days of embryonic development. Single eGFP-positive cells were FACS-sorted into 96-well plates, and single-cell cDNA was prepared using the SMART-seq protocol. Single-cell sequencing libraries were generated using the Nextera XT DNA library preparation kit and sequenced on an Illumina HiSeq sequencer. Reads were aligned to the mouse reference genome build mm10 with TopHat, and single-cell gene expression profiles were computed using Cufflinks.
A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets.
Specimen part, Subject
View Samples