An efficient innate immune recognition of the intracellular parasite T. cruzi is crucial for host protection against development of Chagas disease, which often leads to multiple organ damage, particularly the heart leading to cardiomyopathy. Mechanisms modulated by MyD88 have been shown to be necessary for resistance against T, cruzi infection. Recently, Nod-like receptors have been shown to play an important role as innate immune sensors, particularly as they relate to inflammasome function, caspase activation, and inflammatory cytokine production. In this study, we aimed to investigate the participation of innate immune responses in general, and inflammasomes in particular, in heart inflammation and cardiac damage upon infection with the T. cruzi parasite.
Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1β response and host resistance to Trypanosoma cruzi infection.
Specimen part
View SamplesRNAseq analysis of BAFF in vitro-stimulated (6 hours) murine nfkb2fl/flCD19-Cre (furtheron designated as REL) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor NF-kB2 in BAFF-stimulated B cells. Overall design: Splenic B cells from 12-week old relfl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 6 hours with BAFF. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Impairment of Mature B Cell Maintenance upon Combined Deletion of the Alternative NF-κB Transcription Factors RELB and NF-κB2 in B Cells.
Specimen part, Treatment, Subject
View SamplesRNAseq analysis of CD40 in vitro-stimulated (6 hours) murine nfkb2fl/flCD19-Cre (furtheron designated as REL) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor NF-kB2 in activated B cells. Overall design: Splenic B cells from 12-week old relfl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 6 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Impairment of Mature B Cell Maintenance upon Combined Deletion of the Alternative NF-κB Transcription Factors RELB and NF-κB2 in B Cells.
Specimen part, Treatment, Subject
View SamplesRNA-seq analysis of murine eGFP+ relbfl/flnfkb2fl/flCg1-Cre and Cg1-Cre splenic germinal center B cells identifies genes regulated by the transcription factors RELB and p52 (NF-kB2) in germinal center B cells. Overall design: Germinal center B cells from 12-week old relbfl/flnfkb2fl/flCg1-Cre and Cg1-Cre littermate mice immunized with sheep red blood cells (SRBC) were isolated at day 7 after immunization by flow cytometric sorting from splenic mononuclear cells. RNA was isolated, amplified and submitted for RNA-sequencing on an Illumina HiSeq2500 instrument for 35-40 million 2x50 paired-ended reads.
Transcription factors of the alternative NF-κB pathway are required for germinal center B-cell development.
Age, Specimen part, Subject
View SamplesRNAseq analysis of CD40 + IgM in vitro-stimulated (6 hours) murine relafl/flCD19-Cre (furtheron designated as RELA) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor RELA in activated B cells. Overall design: Splenic B cells from 12-week old relafl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 6 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
No sample metadata fields
View SamplesRNAseq analysis of CD40 + IgM in vitro-stimulated (6 hours) murine relfl/flCD19-Cre (furtheron designated as REL) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor c-REL in activated B cells. Overall design: Splenic B cells from 12-week old relfl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 6 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
No sample metadata fields
View SamplesRNAseq analysis of CD40 + IgM in vitro-stimulated (24 hours) murine relfl/flCD19-Cre (furtheron designated as REL) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor c-REL in activated B cells. Overall design: Splenic B cells from 12-week old relfl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 24 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
No sample metadata fields
View SamplesGene expression profiling of murine eGFP+ relfl/flCg1-Cre and eGFP Cg1-Cre splenic germinal center B cells identifies genes regulated by the transcription factor c-REL in germinal center B cells.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
Age, Specimen part, Time
View SamplesNeuronal migration defects (NMDs) are among the most common and severe brain abnormalities in humans. Lack of disease models in mice or in human cells has hampered the identification of underlying mechanisms. From patients with severe NMDs we generated iPSCs then differentiated neural progenitor cells (NPCs). On artificial extracellular matrix, patient-derived neuronal cells showed defective migration and impaired neurite outgrowth. From a cohort of 107 families with NMDs, sequencing identified two homozygous C-terminal truncating mutations in CTNNA2, encoding aN-catenin, one of three paralogues of the a-catenin family, involved in epithelial integrity and cell polarity. Patient-derived or CRISPR-targeted CTNNA2- mutant neuronal cells showed defective migration and neurite stability. Recombinant aN-catenin was sufficient to bundle purified actin and to suppress the actin-branching activity of ARP2/3. Small molecule inhibitors of ARP2/3 rescued the CTNNA2 neurite defect. Thus, disease modeling in human cells could be used to understand NMD pathogenesis and develop treatments for associated disorders. Overall design: 2 biological replicates per individual (2 iPSC clone differentiations), excluding 1263A, which has one sample
Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.
No sample metadata fields
View SamplesGene expression profiling of murine irf4-/- and irf4+/+ splenic B cells identifies genes regulated by the transcription factor IRF4 in quiescent mature B cells.
IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity.
Specimen part
View Samples