We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples when compared to normal B cells.
Identification of highly methylated genes across various types of B-cell non-hodgkin lymphoma.
Specimen part, Disease, Disease stage
View SamplesTransformation of follicular lymphoma (FL) to a more aggressive disease is associated with rapid progression and death. Existing molecular markers for transformation are few and their clinical impact is limited. Here, we report on a whole-genome study of DNA copy numbers and gene expression profiles in serial FL biopsies. We identified 698 genes with high correlation between gene expression and copy number and the molecular network most enriched for these cis-associated genes. This network includes 14 cis-associated genes directly related to the NFB pathway. For each of these 14 genes, the correlated NFB target genes were identified and corresponding expression scores defined. The scores for six of the cis-associated NFB pathway genes (BTK, IGBP1, IRAK1, ROCK1, TMED7-TICAM2 and TRIM37) were significantly associated with transformation. The results suggest that genes regulating B-cell survival and activation are involved in transformation of FL
Whole-genome integrative analysis reveals expression signatures predicting transformation in follicular lymphoma.
Specimen part
View SamplesThe assignment of diffuse large B-cell lymphoma into cell-of-origin (COO) groups is becoming increasingly important with the emergence of novel therapies that have selective biological activity in germinal center B-cell-like (GCB) or activated B-cell-like (ABC) groups. The LLMPP's Lymph2Cx assay is a parsimonious digital gene-expression (NanoString) based test for COO assignment in formalin-fixed paraffin-embedded tissue (FFPET) routinely produced in standard diagnostic processes. The 20-gene assay was trained using 51 FFPET biopsies; the locked assay was then validated using an independent cohort of 68 FFPET biopsies. Comparisons were made with COO assignment using the original COO model on matched frozen tissue. In the validation cohort the assay was accurate, with only one case with definitive COO being incorrectly assigned, and robust, with >95% concordance of COO assignment between 2 independent laboratories. These qualities, along with the rapid turn-around-time, make Lymph2Cx attractive for implementation in clinical trials and, ultimately, patient management.
Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesWe performed array comparative genomic hybridization (aCGH) and gene expression profiling in 203 samples of diffuse large B cell lymphoma (DLBCL). By gene expression, at least three molecular subtypes of DLBCL termed as germinal center B cell-like (GCB) DLBCL, activated B cell-like (ABC) DLBCL, and primary mediastinal B cell lymphoma (PMBL) can be distinguished. Combining gene expression profiling and aCGH, revealed copy number abnormalities that had strikingly different frequencies in the three molecular DLBCL subtypes. These data provide genetic evidence that the DLBCL subtypes are distinct diseases that utilize different oncogenic pathways.
Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesMantle cell lymphoma (MCL) is an aggressive B-cell neoplasm displaying heterogeneous outcomes after treatment. In 2003, the Lymphoma/Leukemia Molecular Profiling Project described a powerful biomarker, the "proliferation signature", using gene expression in fresh frozen material. Here we describe the training and validation of a new assay that measures the proliferation signature in RNA derived from routinely available formalin-fixed paraffin-embedded (FFPE) biopsies.
New Molecular Assay for the Proliferation Signature in Mantle Cell Lymphoma Applicable to Formalin-Fixed Paraffin-Embedded Biopsies.
Disease, Disease stage, Subject
View SamplesBackground: Transcription control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study, we combined RNA sequencing of human complex I-deficient patient cells across 32 conditions of perturbed mitochondrial metabolism, with a comprehensive analysis of gene expression patterns, co-expression calculations and transcription factor binding sites. Results: Our analysis shows that OXPHOS genes have a significantly higher co-expression with each other than with other genes, including mitochondrial genes. We found no evidence for complex-specific mRNA expression regulation in the tested cell types and conditions: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of OXPHOS complex subunits compared to assembly factors, suggesting divergent transcription programs. Furthermore, complex I co-expression calculations identified 684 genes with a likely role in OXPHOS biogenesis and function. Analysis of evolutionarily conserved transcription factor binding sites in the promoters of these genes revealed almost all known OXPHOS regulators (including GABP, NRF1/2, SP1, YY1, E-box factors) and a set of six yet uncharacterized candidate transcription factors (ELK1, KLF7, SP4, EHF, ZNF143, and EL2). Conclusions: OXPHOS genes share an expression program distinct from other mitochondrial genes, indicative of targeted regulation of this mitochondrial sub-process. Within the subset of OXPHOS genes we established a difference in expression between subunits and assembly factors. Most transcription regulators of genes that co-express with complex I are well-established factors for OXPHOS biogenesis. For the remaining six factors we here suggest for the first time a link with transcription regulation in OXPHOS deficiency. Overall design: RNA-SEQ of whole cell RNA in 2 control and 2 complex I deficient patient fibroblast cell lines treated with 4 compounds in duplicate, resulting in a total of 2x2x4x2=32 samples
Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system.
No sample metadata fields
View SamplesDefective complex I (CI) is the most common type of oxidative phosphorylation (OXPHOS) disease in patients, with an incidence of 1 in 5,000 live births. Complex I deficiency can present in infancy or early adulthood and shows a wide variety of clinical manifestations, including Leigh syndrome, (cardio)myopathy, hypotonia, stroke, ataxia and lactic acidosis. A number of critical processes and factors, like superoxide production, calcium homeostasis, mitochondrial membrane potential and mitochondrial morphology, are known to be involved in clinical CI deficiency, but not all factors are yet known and a complete picture is lacking.
Transcriptional changes in OXPHOS complex I deficiency are related to anti-oxidant pathways and could explain the disturbed calcium homeostasis.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGene expression profiling of DLBCL patient samples was performed to investigate, whether molecular gene expression signatures retain their prognostic significance in patients treated with chemotherapy plus Rituximab. The lymphnode, germinal center signature and a new angiogenesis signature were combined to a final multivariate model which defined quartile groups among Rituximab-CHOP-treated patients with distinct 3-year overall survival rates.
Stromal gene signatures in large-B-cell lymphomas.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesWe are investigating the response of human lymphoblastoid cells to low-dose exposure of environmental metals
Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium.
Cell line, Treatment
View SamplesTotal RNA samples from three replicate cultures of wild type and mutant yeast strains was isolated and expression profile done using Affymetrix arrays. Comparsion between the samples indicate how mutation in a single amino acid residue in histone H4 (H4R45H) affects gene expression in yeast. Such a mutation in histone H4 is known to generate a specific class of mutants called SWI/SNF independent (SIN) mutants, and the mutants were identified by their ability to carry out transcription in the absence of yeast chromatin remodeling complex SWI/SNF. SIN mutations are known to affect higher order chromatin structure and the comparative expression profile would help identification of genes which get affected by such altered chromatin landscape.
A single amino acid change in histone H4 enhances UV survival and DNA repair in yeast.
No sample metadata fields
View Samples