refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon SRP095447
Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Cell lines derived from tumor tissues have been used as a valuable system tostudy gene regulation and cancer development. Comprehensive characterization ofthe genetic background of cell lines could provide clues on novel genes responsiblefor carcinogenesis and help in choosing cell lines for particular studies. Here, we havecarried out whole exome and RNA sequencing of commonly used glioblastoma (GBM)cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotidevariations (SNVs), indels, differential gene expression, gene fusions and RNA editingevents. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) werepotentially cancer-specific. The cell lines showed frequent SNVs and indels in someof the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 andNF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showedalterations. While no cell line carried IDH1 mutations, five cell lines showed hTERTpromoter activating mutations with a concomitant increase in hTERT transcript levels.Five significant gene fusions were found of which NUP93-CYB5B was validated. Anaverage of 18,949 RNA editing events was also obtained. Thus we have generated acomprehensive catalogue of genetic alterations for six GBM cell lines.

Publication Title

Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71045
Gene expression of CD8+ T cells isolated from human subjects during acute and convalescent phase of EBV infection
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Affymetrix HuGene ST 1.0 microarrays were used to study and compare gene expression in peripheral blood CD8+ T cells of human patients with Acute Infectious Mononucleosis (AIM; acute EBV infection) and during convalescence (CONV; 6-12 months after AIM visit). Blood samples were drawn from ten human patients with AIM and again during their covalescence (CONV). Peripheral blood mononuclear cells were isolated and cryopreserved. Paired AIM and CONV samples were thawed and CD8+ T cells purified with magnetic beads. RNA was isolated and processed for hybridization according to the Affymetrix protocol

Publication Title

A Gene Expression Signature That Correlates with CD8+ T Cell Expansion in Acute EBV Infection.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE12814
Identifying the molecular signature of the interstitial del(7q) subgroup of uterine leiomyomata using a paired analysis
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Uterine leiomyomata (UL), the most common neoplasm in reproductive-age women, have recurrent cytogenetic abnormalities including del(7)(q22q32). To develop a molecular signature, matched del(7q) and non-del(7q) tumors identified by FISH or karyotyping from 11 women were profiled with expression arrays. Our analysis using paired t-tests demonstrates this matched design is critical to eliminate confounding effects of genotype and environment that underlie patient variation. A gene list ordered by genome-wide significance showed enrichment for the 7q22 target region. Modification of the gene list by weighting each sample for percent of del(7q) cells to account for the mosaic nature of these tumors further enhanced the frequency of 7q22 genes. Pathway analysis revealed two of the 19 significant functional networks were associated with development and the most represented pathway was protein ubiquitination, which can influence tumor development by stabilizing oncoproteins and destabilizing tumor suppressor proteins. Array CGH (aCGH) studies determined the only consistent genomic imbalance was deletion of 9.5 megabases from 7q22-7q31.1. Combining the aCGH data with the del(7q) UL mosacism-weighted expression analysis resulted in a list of genes that are commonly deleted and whose copy number is correlated with significantly decreased expression. These genes include the proliferation inhibitor HPB1, the loss of expression of which has been associated with invasive breast cancer, as well as the mitosis integrity-maintenance tumor suppressor RINT1. This study provides a molecular signature of the del(7q) UL subgroup and will serve as a platform for future studies of tumor pathogenesis.

Publication Title

Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE18096
Identifying the molecular signature of the t(12;14) subgroup of uterine leiomyomata using a paired analysis
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Uterine leiomyomata (UL), the most common neoplasm in reproductive age women, have recurrent cytogenetic abnormalities including t(12;14). To develop a molecular signature, matched t(12;14) and non-t(12;14) tumors identified by FISH or karyotyping from each of 9 women were profiled using Affymetrix GeneChip U133 Plus 2.0 oligonucleotide arrays. Model analysis demonstrated the necessity for a matched design to eliminate the confounding effect of genotype and environment that underlay patient to patient variation.

Publication Title

Expression profiling of uterine leiomyomata cytogenetic subgroups reveals distinct signatures in matched myometrium: transcriptional profilingof the t(12;14) and evidence in support of predisposing genetic heterogeneity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE67415
Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ebf1 is a transcription factor with documented, and dose dependent, functions in both normal and malignant B-lymphocyte development. In order to understand more about the role of Ebf1 in malignant transformation, we have investigated the impact of reduced functional Ebf1 dose on early B-cell progenitors. Gene expression analysis in loss and gain of function analysis suggested that Ebf1 was involved in the regulation of genes of importance for DNA repair as well as cell survival. Investigation of the level of DNA damage in steady state as well as after induction of DNA damage by UV light supported that pro-B cells lacking one functional allele of Ebf1 display a reduced ability to repair DNA damage. This was correlated to a reduction in expression of Rad51 and combined analysis of published 4C and chromatin Immuno precipitation data suggested that this gene is a direct target for Ebf1. Even though the lack of one allele of Ebf1 did not result in any dramatic increase of tumor formation, we noted a dramatic increase in the formation of pro-B cell leukemia in mice carrying a combined heterozygote mutation in the Ebf1 and Pax5 genes. Even though the tumors were phenotypically similar and stable, we noted a large degree of molecular heterogeneity well in line with a mechanism involving impaired DNA repair. Our data support the idea that Ebf1 controls homologous DNA repair in a dose dependent manner and that this may explain the frequent involvement of Ebf1 in human leukemia

Publication Title

Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE51912
Whole transcriptome analysis of laser capture microdissected tissues reveals site-specific programming of the host epithelial transcriptome by the gut microbiota
  • organism-icon Mus musculus
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Site-specific programming of the host epithelial transcriptome by the gut microbiota.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-MEXP-2371
Transcription profiling by array of Arabidopsis thaliana WRKY18/40 double knock out infected with Golovinomyces orontii
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Differential expression of genes between Arabidopsis WRKY18/40 knock out and wild type plants, after 8 h post inoculation of powdery mildew pathogen.

Publication Title

Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE66256
Frequent derepression of the mesenchymal transcription factor gene in acute myeloid leukemia
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Frequent Derepression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66254
Frequent derepression of the mesenchymal transcription factor gene in acute myeloid leukemia (human)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Bone marrow samples from normal adult male donors were collected into EDTA. Red cells were removed by ammonium chloride lysis. Leukocytes were washed in SM buffer and CD34+ cells were separated from CD34- cells using an AutoMACS device and anti-CD34 immunomagnetic beads (Miltenyi Biotec), according to manufacturers instructions. For mature cell populations, CD34- cells were FACS purified according to the following immunophenotypes, with 7-AAD used to exclude dead cells: Neutrophils: side scatter high CD15+ CD16+. Monocytes: side scatter low-intermediate CD14+ CD16- CD15-. See also Huang et al., 2014.

Publication Title

Frequent Derepression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54309
A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Given the importance of deregulated phosphoinositide (PI) signaling in leukemic hematopoiesis, genes coding for proteins that regulate PI metabolism may have significant and as yet unappreciated roles in leukemia. We performed a targeted knockdown screen of PI modulator genes in human AML cells and identified candidates required to sustain proliferation or prevent apoptosis. One of these, the lipid kinase phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A) regulates cellular levels of phosphatidylinositol-5-phosphate (PtsIns5P) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). We found PIP4K2A to be essential for the clonogenic and leukemia-initiating potential of human AML cells, and for the clonogenic potential of murine MLL-AF9 AML cells. Importantly, PIP4K2A is also required for the clonogenic potential of primary human AML cells. Its knockdown results in accumulation of the cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, G1 cell cycle arrest and apoptosis. Both CDKN1A accumulation and apoptosis were partially dependent upon activation of the mTOR pathway. Critically, however, PIP4K2A knockdown in normal hematopoietic stem and progenitor cells, both murine and human, did not adversely impact either clonogenic or multilineage differentiation potential, indicating a selective dependency which we suggest may be the consequence of the regulation of different transcriptional programmes in normal versus malignant cells. Thus, PIP4K2A is a novel candidate therapeutic target in myeloid malignancy.

Publication Title

A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact