refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 260 results
Sort by

Filters

Technology

Platform

accession-icon GSE22624
Effect of brain death on gene expression in liver from rhesus macaque
  • organism-icon Macaca mulatta
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

The majority of transplanted organs are recovered from deceased donors after brain death (BD). BD has been hypothesized to compromise organ quality in part from the activation of systemic inflammation. The objective of this study was to characterize the immune response induced by BD in a well controlled non-human primate (NHP) model. Assessment of physiologic parameters (blood pressure, heart rate, urinary output, catecholamines, and cerebral angiograms) was used to confirm BD. After 6h of BD, we monitored changes in the peripheral blood by flow cytometry, liver gene expression by microarray and liver protein expression by Western blotting and immunohistochemistry (IHC). BD was indicated by a rapid increase in blood pressure followed by hemodynamic instability, hypotension, diabetes insipidus and the absence of cerebral blood flow and brain stem reflexes. Within the peripheral blood IL-6 levels and neutrophils increased and myeloid dendritic cells decreased in BD NHP when compared to living donor controls. Genes related to innate inflammatory response and apoptosis were significantly upregulated in BD NHP. BD livers showed increased expression of suppressor of cytokine signaling 3 (SOCS3) protein and the danger associated molecular pattern protein S100A9. Increased expression of intracellular cellular adhesion molecule 1 (ICAM-1) and major histocompatibility complex (MHC) II, neutrophil accumulation, and products of oxidative stress (carboxy methyl lysine (CML) and hydroxynonenal (HNE)) were detected by IHC in livers. Conclusion: These data indicate that BD leads to the rapid activation of an inflammatory response within the liver involving components of the innate immune response at the gene and protein levels. The activation of these inflammatory pathways may provide one explanation for the reduced post-transplant function of organs from brain dead donors.

Publication Title

Early activation of the inflammatory response in the liver of brain-dead non-human primates.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE52485
Gene expression profiling of nave bone marrow-resident granulocyte monocyte precursors (GMPs) and TSLP-elicited splenic GMP-like cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Extramedullary hematopoiesis (EMH) refers to the differentiation of hematopoietic stem cells (HSCs) into effector cells that occurs in compartments outside of the bone marrow. Previous studies linked pattern recognition receptor (PRR)-expressing HSCs, EMH and immune responses to microbial stimuli. However, the factors that regulate EMH and whether EMH operates in broader immune contexts remain unknown. Here, we demonstrate a previously unrecognized role for thymic stromal lymphopoietin (TSLP) in promoting the population expansion of progenitor cells in the periphery and identify that TSLP-elicited progenitors differentiate into effector cells including macrophages, dendritic cells and granulocytes that contribute to TH2 cytokine responses. The frequency of circulating progenitor cells was also increased in allergic patients with a gain-of-function polymorphism in TSLP, suggesting the TSLP-EMH pathway may operate in human disease. These data identify that TSLP-induced EMH contributes to the development of allergic inflammation and indicate that EMH is a conserved mechanism of innate immunity.

Publication Title

Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE94708
iPSCs from patients with NBS as a model uncovering disease mechanisms and a screening platform for anti-oxidants modifying genomic stability
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip (controls added), Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE94707
iPSCs from patients with NBS as a model uncovering disease mechanisms and a screening platform for anti-oxidants modifying genomic stability [iPSCs]
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.

Publication Title

Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE94706
iPSCs from patients with NBS as a model uncovering disease mechanisms and a screening platform for anti-oxidants modifying genomic stability [fibroblasts]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip (controls added), Illumina HumanHT-12 V4.0 expression beadchip

Description

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.

Publication Title

Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP090472
Morphological and molecular characterization of human dermal lymphatic collectors
  • organism-icon Homo sapiens
  • sample-icon 122 Downloadable Samples
  • Technology Badge Icon

Description

Millions of patients suffer from lymphedema worldwide. Supporting the contractility of lymphatic collectors is an attractive target for pharmacological therapy of lymphedema. However, lymphatics have mostly been studied in animals, while the cellular and molecular characteristics of human lymphatic collectors are largely unknown. We studied epifascial lymphatic collectors of the thigh, which were isolated for autologous transplantations. Our immunohistological studies identify additional markers for LECs (vimentin, CCBE-1). We show and confirm differences between initial and collecting lymphatics concerning the markers ESAM1, D2-40 and LYVE-1. Our transmission electron microscopic studies reveal two types of smooth muscle cells (SMCs) in the media of the collectors with dark and light cytoplasm. We observed vasa vasorum in the media of the largest collectors, as well as interstitial Cajal-like cells, which are highly ramified cells with long processes, caveolae, and lacking a basal lamina. They are in close contact with SMCs, which possess multiple caveolae at the contact sites. Immunohistologically we identified such cells with antibodies against vimentin and PDGFRa, but not CD34 and cKIT. With Next Generation Sequencing we searched for highly expressed genes in the media of lymphatic collectors, and found therapeutic targets, suitable for acceleration of lymphatic contractility, such as neuropeptide Y receptors 1, and 5; tachykinin receptors 1, and 2; purinergic receptors P2RX1, and 6, P2RY12, 13, and 14; 5-hydroxytryptamine receptors HTR2B, and 3C; and adrenoceptors a2A,B,C. Our studies represent the first comprehensive characterization of human epifascial lymphatic collectors, as a prerequisite for diagnosis and therapy. Overall design: The transcriptome of 6 different normal human lymphatic collectors (Lyko1, Lyko 4-12, Lyko 5, Lyko12, Lyko13, Lyko26) from the dermis of the thigh of women between 44 and 61 years of age was compared to cultures of human dermal lymphatic endothelial cells (LEC1, LEC2, HD-LEC9A) and a mixture of 3 different human dermal blood endothelial cells (HD-BEC-CA) to identify potential drug targets in the media of the collectors.

Publication Title

Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2401
Gene expression in Hypotension
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Rat kidney in normo- and hypotensive animals.

Publication Title

A physiogenomic approach to study the regulation of blood pressure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63336
Enterohemorrhagic Escherichia coli (EHEC) deletions of glmY and glmZ
  • organism-icon Escherichia coli
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Transcriptional analysis of the effects of the deletion of the sRNAs glmY and glmZ in EHEC

Publication Title

Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47425
Lung transcript expression profile after Gata5 gene deletion
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gata5 is a zinc finger transcription factor that is expressed in embryonic pulmonary mesenchyme and becomes upregulated in the lungs, gut, and bladder during postnatal development. We used microarray to comapre gene expression profiles of mouse lung between Gata5 knockout and wild type mice. We hope to identify the differentially expressed genes that affected by Gata5 gene deletion and their functional clusters or pathways.

Publication Title

Gata5 deficiency causes airway constrictor hyperresponsiveness in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17449
Transcription signature of Multiple Sclerosis
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Learning from nature: pregnancy changes the expression of inflammation-related genes in patients with multiple sclerosis.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact