refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE17044
Expression data from androgen treated LNCaP cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Androgens are required for the development of normal prostate, and they are also linked to the development of prostate cancer.

Publication Title

Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP074896
Gene expression profiling of s-SHIP positive mammary epithelial cells
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

We performed RNAseq on subpopulations of mammary epithelial cells. We carried out sorting of a gradient of s-SHIP positive cells in the mammary gland (neg, low, and hi for s-SHIP eGFP). High sSHIP-eGFP populations denote a postulated stem cell population, while low and negative represent more differentiated cell types. s-SHIP eGFP hi to negative potentially represents a gradient from stem to more differentiated progeny, respectively, within the basal epithelial compartment. We FACS sorted 3 replicates for each cell type to represent s-SHIP-neg, s-SHIP-low, and s-SHIP-high. Overall design: We FACS sorted 3 replicates for each cell type to represent s-SHIP-neg, s-SHIP-low, and s-SHIP-high, profiling each of these groups using RNA sequencing.

Publication Title

WNT-Mediated Regulation of FOXO1 Constitutes a Critical Axis Maintaining Pubertal Mammary Stem Cell Homeostasis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE5180
Gene expression in aortic aneurysms associated with tricuspid and bicuspid valves
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Patients with bicuspid aortic valve (BAV) have increased risk of thoracic ascending aortic aneurysm (AscAA) and dissection compared to those with a normal tricuspid aortic valve (TAV). The present study was undertaken to evaluate whether differences in gene expression exist in aortas from BAV and TAV patients with AscAA.

Publication Title

Elevated expressions of osteopontin and tenascin C in ascending aortic aneurysms are associated with trileaflet aortic valves as compared with bicuspid aortic valves.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093231
RNA-seq of Tumor-associated Endothelial Cells from Different Immunodeficient Backgrounds
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To investigate the impact of CD4+ T cells on tumor vasculature, we performed transcriptome profiling on tumor-associated endothelial cells in mice with or without functional CD4 T cells. In addition to examining four pathways that affect vessel maturation (VEGFA, ANGPT1/ANGPT2, TGFbR, and sphingolipid metabolism), we ran Gene Set Enrichment Analysis (GSEA) and found a down-regulation of cellular adhesion and extracellular matrix assembly-related pathways in the CD4 T cell deficient group. This suggests that CD4+ T cells play an important role in promoting tumor vessel integrity and normalization. Overall design: Transcriptome profiling of E0771 murine tumor-associated endothelial cells isolated from CD4+ T cell competent (CD8KO, Tie2Cre, WT) or deficient mouse strains (CD4KO, Tie2Cre;H2Ab flox and TCRKO) .

Publication Title

Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE72320
Gene expression profiling of MDA231 cells with alterations involving beta-oxidation pathway
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to confirm the role of fatty acid -oxidation in Src regulation, we performed gene expression analysis in MDA231 cells from in vivo model treated with ETX or knockdown of CPT1 or CPT2 using shRNA. As expected, inhibition of -oxidation showed a gene expression pattern that is opposite to the published Src regulated gene pattern. The known Src up-regulated genes are down-regulated and Src down-regulated genes are up-regulated in -oxidation inhibited cells. Western Blotting further confirmed the gene expression pattern. Knockdown of CPT1 or CPT2 inhibited Src Y416 autophosphorylation as observed with ETX.

Publication Title

Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE72319
Gene expression profiling of transmitochondrial cybrids (triple negative breast cancer cells in SUM159 background)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used a transmitochondrial cybrid (cybrids)-based discovery approach to identify mitochondria-regulated cancer pathways in TN BCa. Cybrids were generated under a moderately metastatic TN BCa cell line SUM159 as the common nuclear background with mitochondria from benign breast epithelium (A1N4) and moderately metastatic (SUM159) TN BCa cells. In vitro and in vivo studies suggested that even under the common moderately cancerous nuclear background, mitochondria from benign cells inhibit and metastatic cell induce cancer properties of a moderately aggressive TN BCa cell. Gene expression studies identified c-Src onco-pathway as one of the major cancer pathways altered according to the mitochondria status of the cybrids.

Publication Title

Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68138
An Immune and Inflammation Signature in Prostate Tumors of Smokers
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68135
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 1)
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68136
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 2)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE68137
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 3)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact