refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1076 results
Sort by

Filters

Technology

Platform

accession-icon SRP057508
Multiplex Single Cell Profiling of Chromatin Accessibility by Combinatorial Cellular Indexing [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Technical advances have enabled the collection of genome and transcriptome data sets with single-cell resolution. However, single-cell characterization of the epigenome has remained challenging. Furthermore, because cells must be physically separated prior to biochemical processing, conventional single-cell preparatory methods scale linearly. We applied combinatorial cellular indexing to measure chromatin accessibility in thousands of single cells per assay, circumventing the need for compartmentalization of individual cells. We report chromatin accessibility profiles from over 15,000 single cells and use these data to cluster cells on the basis of chromatin accessibility landscapes. We identify modules of coordinately regulated chromatin accessibility at the level of single cells both between and within cell types, with a scalable method that may accelerate progress toward a human cell atlas. Overall design: 3 replicates from GM12878 and HL-60 cell lines collected for differential gene expression analysis.

Publication Title

Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP153396
Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  • organism-icon Homo sapiens
  • sample-icon 472 Downloadable Samples
  • Technology Badge Icon

Description

Here we describe sci-CAR, a combinatorial indexing strategy to jointly profile chromatin accessibility and mRNA in each of thousands of single cells. As a proof-of-concept, we apply sci-CAR to 4,825 cells comprising a time-series of dexamethasone treatment, as well as to 11,233 cells from the mouse kidney. Overall design: single cell RNA-seq and ATAC-seq co-profiling for HEK293T cells, NIH/3T3 cells, A549 cells across three treatment conditions (DEX 0 hour, 1 hour and 3 hour treatment), and wild type mouse kidney.

Publication Title

Joint profiling of chromatin accessibility and gene expression in thousands of single cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076924
Comprehensive Analysis of Nucleocytoplasmic Dynamics of mRNA in Drosophila cells
  • organism-icon Drosophila melanogaster
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Eukaryotic mRNAs undergo a cycle of transcription, nuclear export, and degradation. A major challenge is to obtain a global, quantitative view of these processes. Here we measured the genome-wide nucleocytoplasmic dynamics of mRNA in Drosophila cells by metabolic labeling in combination with cellular fractionation. By mathematical modeling of these data we determined rates of transcription, export and cytoplasmic decay for >5,000 genes. We characterized these kinetic rates and investigated links with mRNA features, RNA-binding proteins (RBPs) and chromatin states. We found prominent correlations between mRNA decay rate and transcript size, while nuclear export rates are linked to the size of the 3''UTR. Transcription, export and decay rates are each associated with distinct spectra of RBPs. Specific classes of genes, such as those encoding cytoplasmic ribosomal proteins, exhibit characteristic combinations of rate constants, suggesting modular control. Overall, transcription and decay rates have a major impact on transcript abundance, while nuclear export is of minor importance. Finally, correlations between rate constants suggest global coordination between the three processes. Our approach should be generally applicable to other cell systems and provides insights into the genome-wide nucleocytoplasmic kinetics of mRNA. Overall design: 24 RNA-seq experiments comprising 2 biological replicates: pre-exsiting nuclear mRNA time 0h (samples 1&13), pre-exsiting nuclear mRNA time 0.5h (samples 2&14), pre-exsiting nuclear mRNA time 1.5h (samples 3&15) , pre-exsiting nuclear mRNA time 3h (samples 4&16), pre-exsiting nuclear mRNA time 5h (samples 5&17), pre-exsiting nuclear mRNA time 7.5h (samples 6&18), pre-exsiting cytoplasmic mRNA time 0h (samples 7&19), pre-exsiting cytoplasmic mRNA time 0.5h (samples 8&20), pre-exsiting cytoplasmic mRNA time 1.5h (samples 9&21) , pre-exsiting cytoplasmic mRNA time 3h (samples 10&22), pre-exsiting cytoplasmic mRNA time 5h (samples 11&23), pre-exsiting cytoplasmic mRNA time 7.5h (samples 12&24)

Publication Title

Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP049240
Nuclear Lamins are Not Required for Genome Organization in Mouse Embryonic Stem Cells [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In mammals, the nuclear lamina interacts with hundreds of large genomic regions, termed lamina-associated domains (LADs) that are generally in a transcriptionally repressed state. Lamins form the major structural component of the lamina and have been reported to bind DNA and chromatin. Here we systematically evaluated whether lamins are necessary for the peripheral localization of LADs in murine embryonic stem cells. Surprisingly, removal of essentially all lamins did not have any detectable effect on the genome-wide interaction pattern of chromatin with the inner nuclear membrane. This suggests that other components of the inner nuclear membrane mediate these interactions. Overall design: 2 samples, each with a biological replicate: wt mESC, B type lamin null (dKO) dKO mESC

Publication Title

Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56400
Effect of PARP1 inhibition on transcription in MCF7 cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the role of PARP1 in gene transcription in MCF7 cells under non-stress conditions. The hypothesis was that PARP1 activity in MCF7 cells plays a role in gene transcription. The results indicate that PARP1 inhibition does not significantly affect transcription after 6 hours of treatment.

Publication Title

Basal activity of a PARP1-NuA4 complex varies dramatically across cancer cell lines.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58844
Effect of PARP1 inhibition on transcription high and low PARP activity cell lines
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the role of PARP1 in gene transcription in cell lines with variable PARP1 activity.

Publication Title

Basal activity of a PARP1-NuA4 complex varies dramatically across cancer cell lines.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18269
HepaRG cells as a model of the primary human hepatocyte transcriptome
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of this experiment is to determine the similarities and differences between gene expression profiles in HepaRG cells versus primary human hepatocytes, human liver, and the commonly used HepG2 cell.

Publication Title

A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE3554
Microarray Analysis of Retinal Gene Expression in the DBA/2J Model of Glaucoma
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Purpose: The DBA/2J mouse is a model for secondary angle-closure glaucoma due to iris atrophy and pigment dispersion, which ultimately leads to increased intraocular pressure (IOP). We sought to correlate changes in retinal gene expression with glaucoma-like pathology by performing microarray analysis of retinal RNA from DBA/2J mice at 3 months before disease onset, and at 8 months, after IOP elevation. Methods: IOP was monitored monthly in DBA/2J animals by Tono-Pen and animals with normal (3 months) or elevated IOP (8 months) were identified. RNA was prepared from 3 individual retinas at each age, and the RNA was amplified and used to generate biotin-labeled probe for high density mouse Affymetrix arrays (U430.2). A subset of genes was selected for confirmation by quantitative RT-PCR using independent retina samples from DBA/2J animals at 3, 5 and 8 months of age, and compared to retinas from C57BL/6J control animals at 3 and 8 months. Results: There were changes in expression of 68 genes, with 32 genes increasing and 36 genes decreasing at 8 months versus 3 months. Upregulated genes were associated with immune response, glial activation, signaling and gene expression, while down-regulated genes included multiple crystallin genes. Significant changes in 9 upregulated genes and 2 downregulated genes were confirmed by quantitative RT-PCR, with some showing changes in expression by 5 months. Conclusions: DBA/2J retina shows evidence for glial activation and an immune-related response following IOP elevation, similar to what has been reported following acute elevation of IOP in other models.

Publication Title

Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma.

Sample Metadata Fields

Age

View Samples
accession-icon GSE61233
A weekly alternating diet between caloric restriction and medium fat protects the liver from NAFLD in middle aged C57BL/6J mice
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

SCOPE: We investigated whether a novel dietary intervention consisting of an every-other-week calorie-restricted diet could prevent nonalcoholic fatty liver disease (NAFLD) development induced by a medium-fat (MF) diet.

Publication Title

A weekly alternating diet between caloric restriction and medium fat protects the liver from fatty liver development in middle-aged C57BL/6J mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE18128
Involvement of Snf7 and Rim101 in regulation of TIR1 and anaerobically up-regulated genes in yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Despite the scientific and applied interest in anaerobic metabolism of Saccharomyces cerevisiae, not all genes whose transcription is up-regulated under anaerobic conditions have yet been linked to known transcription factors. Experiments with a reporter construct in which the promoter of the anaerobically up-regulated TIR1 gene was fused to LacZ revealed a complete loss of anaerobic up-regulation in a snf7 mutant. Anaerobic up-regulation was restored by expression of a truncated allele of RIM101 that encodes for a constitutively active Rim101p transcription factor. Analysis of LacZ expression in several deletion mutants confirmed that the effect of Snf7p on anaerobic up-regulation of TIR1 involved Rim101p and did not require a functional multi-vesicular body sorting pathway (in which Snf7p also participates). Transcriptome analysis in anaerobic chemostat cultures revealed that 26 additional genes exhibited a Snf7p/Rim101p dependent anaerobic up-regulation. Since, in its activated form, Rim101p is generally known as a transcriptional repressor, its role in anaerobic up regulation of TIR1 and other anaerobic yeast genes must involve additional factors. Further studies with deletion mutants in NRG1, NRG2 and SMP1, which were previously shown to be regulated by Rim101p, showed that these genes were not involved in the regulation of TIR1. However, the aerobic repression mechanism of TIR1 involved the general repressor Ssn6p-Tup1p complex. The physiological relevance of Snf7p/Rim101p-mediated transcriptional up-regulation of several genes in anaerobic yeast cultures was evident from reduced growth of a snf7 under anaerobic conditions.

Publication Title

Involvement of Snf7p and Rim101p in the transcriptional regulation of TIR1 and other anaerobically upregulated genes in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact